Menu Close

let-U-n-n-2-if-n-even-and-U-n-n-1-2-if-n-odd-let-f-n-k-0-n-U-k-prove-that-x-y-N-2-f-x-y-f-x-y-xy-




Question Number 73039 by mathmax by abdo last updated on 05/Nov/19
let U_n =(n/2) if n even and U_n =((n−1)/2) if n odd let f(n)=Σ_(k=0) ^n U_k   prove that ∀(x,y)∈N^2     f(x+y)−f(x−y)=xy
letUn=n2ifnevenandUn=n12ifnoddletf(n)=k=0nUkprovethat(x,y)N2f(x+y)f(xy)=xy
Answered by mind is power last updated on 05/Nov/19
just for the definition of f   x≥y  x+y,x−y has sam parite  f(n)=Σ_(k=0) ^n U_k =Σ_(k=0) ^(E((n/2))) k+Σ_(k=1) ^(E(((n−1)/2))) k=(((E((n/2))+1).(E((n/2))))/2)+((E(((n−1)/2)).(1+E(((n−1)/2))))/2)  f(x+y)−f(x−y)  is x+y=2n  x−y=2n−2y  ⇒f(x+y)−f(x−y)=((n(n+1))/2)−(((n−y+1)(n−y))/2)+(((n−1)(n))/2)−(((n−y−1)(n−y))/2)  =((n^2 +n−(n^2 −2ny+y^2 +n−y)+n^2 −n−(n^2 +y^2 −2ny−n+y))/2)  =((−2y^2 +4ny)/2)=((−2y^2 +2(x+y)y)/2)=xy  same thing if x+y=2n+1
justforthedefinitionoffxyx+y,xyhassamparitef(n)=k=0nUk=E(n2)k=0k+E(n12)k=1k=(E(n2)+1).(E(n2))2+E(n12).(1+E(n12))2f(x+y)f(xy)isx+y=2nxy=2n2yf(x+y)f(xy)=n(n+1)2(ny+1)(ny)2+(n1)(n)2(ny1)(ny)2=n2+n(n22ny+y2+ny)+n2n(n2+y22nyn+y)2=2y2+4ny2=2y2+2(x+y)y2=xysamethingifx+y=2n+1
Commented by mathmax by abdo last updated on 05/Nov/19
thanx sir.
thanxsir.

Leave a Reply

Your email address will not be published. Required fields are marked *