Menu Close

Let-us-consider-the-function-F-x-0-1-e-x-ln-x-lnt-dt-1-Prove-that-for-all-x-1-F-x-exist-2-Prove-that-lim-t-0-tln-x-lnt-0-3-Prove-that-F-C-1-1-1-and-for-all-x-1-F-x-F-




Question Number 75220 by ~blr237~ last updated on 08/Dec/19
Let us consider the function   F(x)=∫_0 ^1  e^(−x) ln(x−lnt)dt   1)Prove that for all x≥1 ,  F(x) exist  2)Prove that lim_(t→0)  tln(x−lnt)=0  3)Prove that F ∈ C^1 ([1:∞[,[1:∞[) and for   all x≥1  F(x)=F′(x)+lnx  4) Find out the value   lim_(x→∞)  F(x)      and  lim_(x→1) F(x)  5)Can you prove that at least one of the both result is irrational???
LetusconsiderthefunctionF(x)=01exln(xlnt)dt1)Provethatforallx1,F(x)exist2)Provethatlimt0tln(xlnt)=03)ProvethatFC1([1:[,[1:[)andforallx1F(x)=F(x)+lnx4)FindoutthevaluelimxF(x)andlimFx1(x)5)Canyouprovethatatleastoneofthebothresultisirrational???
Answered by mind is power last updated on 08/Dec/19
mistak at 3)  F(x)=∫_0 ^1 e^(−x) ln(x−ln(t))dt  F′(x)=∫_0 ^1 {−e^(−x) ln(x−ln(t))+(e^(−x) /(x−ln(t)))}dt  by part F(x)=e^(−x) ∫_0 ^1 1.ln(x−ln(t))dt  F(x)=e^(−x) {[tln(x−ln(t))]_0 ^1 −∫_0 ^1 t.((−1)/t).(dt/(x−ln(t)))}  =e^(−x) ln(x)+e^(−x) ∫_0 ^1 (dt/(x−ln(t)))  ⇒F(x)−F′(x)=∫_0 ^1 e^(−x) ln(x−ln(t))dt+e^(−x) ln(x)  ⇔−F′(x)=e^(−x) ln(x)  ⇒F′(x)=−e^(−x) ln(x)
mistakat3)F(x)=01exln(xln(t))dtF(x)=01{exln(xln(t))+exxln(t)}dtbypartF(x)=ex011.ln(xln(t))dtF(x)=ex{[tln(xln(t))]0101t.1t.dtxln(t)}=exln(x)+ex01dtxln(t)F(x)F(x)=01exln(xln(t))dt+exln(x)F(x)=exln(x)F(x)=exln(x)
Commented by ~blr237~ last updated on 08/Dec/19
Sorry  it′s because , i started my work  with  G(x)=e^x F(x)   and it was  G(x)=G′(x)+lnx .
Sorryitsbecause,istartedmyworkwithG(x)=exF(x)anditwasG(x)=G(x)+lnx.
Commented by mind is power last updated on 08/Dec/19
F(x)=∫_0 ^1 ln(x−ln(t))dt?
F(x)=01ln(xln(t))dt?
Commented by ~blr237~ last updated on 09/Dec/19
yes
yes
Answered by mind is power last updated on 09/Dec/19
F(x )=∫_0 ^1 e^(−x) ln(x−ln(t))dt  uf x≥1⇒x−ln(t)≥1 ,∀t∈[0,1]  1≤ln(x−ln(t))=ln(x)+ln(1−((ln(t))/x))≤ln(x)−((ln(t))/x)≤ln(x)  0≤∫_0 ^1 e^(−x) ln(x−ln(t))dt≤e^(−x) ∫_0 ^1 (ln(x)−((ln(t))/x))dt=(ln(x)+(1/x))e^(−x)   ⇒F(x) exist  2) ∀(x,t)∈[1,+∞[×[0,1]  0≤tln(x−ln(t))≤t ln(x)−((tln(t))/x)  lim  tln(x)−((tln(t))/x)→0  ⇒t ln(x−ln(t))→0  3) F is C_1   F is continous   (x,t)→e^(−x) ln(x−ln(t)) is continous in each variable  e^(−x) ln(x−ln(t))≤e^(−x) {ln(x)+ln(1−((ln(t))/x))}≤e^(−x) {ln(x)−((ln(t))/x)}  ≤e^(−x) ln(x)+(e^(−x) /x){−ln(t)}  e^(−x) ln(x)≤1,∀x≥1   (e^(−x) /x)≤1 ,∀x≥1⇒e^(−x) ln(x−ln(t))≤1−ln(t)=g(t)  ⇒e^(−x) ln(x−ln(t))≤(1−ln(t))=g(t) witch is integrBl in ]0,1[  (t,x)→(∂/∂x)(e^(−x) ln(x−ln(t))) continus  (t,x)→(∂/∂t)(e^(−x) ln(x−ln(t)))continus  over [0,1[  (∂/∂x)(e^(−x) ln(x−ln(t)))=−e^(−x) ln(x−ln(t))+(e^(−x) /(x−ln(t)))  x−ln(t)≥1⇒(e^(−x) /(x−ln(t)))≤e^(−x) ≤1  ln(x−ln(t))=ln(x)+ln(1−((ln(t))/x))≤ln(x)−((ln(t))/x)  ⇒∣(∂/∂x)(e^(−x) ln(x−ln(t)))∣≤e^(−x) ln(x−ln(t))+1≤e^(−x) ln(x)+e^(−x) .((−ln(t))/x)+1  ≤3−ln(t) =g(t)  ⇒∀x∈[1,+∞[   ∫∣(∂/∂x)(e^(−x) ln(x−ln(t))∣dt≤∫_0 ^1 g(t)dt=4  ⇒F(x) is C_1   g(x)=e^x F(x)  g(x) is C_1  since F(x) and e^x  are  g(x)=∫_0 ^1 ln(x−ln(t))dt  g(x)=∫_0 ^1 1.ln(x−ln(t))dt by part  ⇒g(x)=[tln(x−ln(t))]_0 ^1 +∫(1/t).(t/(x−ln(t)))dt  g(x)=ln(x)+∫(dt/(x−ln(t)))  g′(x)=∫_0 ^1 (∂/∂x)(ln(x−ln(t))dt  g′(x)=∫_0 ^1 (dt/(x−ln(t)))   g(x)=ln(x)+g′(x)⇔g(x)=g′(x)+ln(x)  g is continous   lim_(x→∞) F(x)=lim_(x→∞) ∫_0 ^1 ln(x−ln(t))dt=lim_(x→∞) ∫_0 ^1 (dt/(x−ln(t)))  x−ln(t)≥x⇒  ≤lim_(x→∞) ∫_0 ^1 (dt/x)=lim_(x→∞) (1/x)=0  since G(x) is C_1 ⇒lim_(x→1) G(x)=G(1)⇒  lim_(x→1) ∫_0 ^1 (dt/(x−ln(t)))=∫_0 ^1 (dt/(1−ln(t)))  u=−ln(t)⇒G(1)=∫_0 ^(+∞) (e^(−u) /(1+u))
F(x)=01exln(xln(t))dtufx1xln(t)1,t[0,1]1ln(xln(t))=ln(x)+ln(1ln(t)x)ln(x)ln(t)xln(x)001exln(xln(t))dtex01(ln(x)ln(t)x)dt=(ln(x)+1x)exF(x)exist2)(x,t)[1,+[×[0,1]0tln(xln(t))tln(x)tln(t)xlimtln(x)tln(t)x0tln(xln(t))03)FisC1Fiscontinous(x,t)exln(xln(t))iscontinousineachvariableexln(xln(t))ex{ln(x)+ln(1ln(t)x)}ex{ln(x)ln(t)x}exln(x)+exx{ln(t)}exln(x)1,x1exx1,x1exln(xln(t))1ln(t)=g(t)exln(xln(t))(1ln(t))=g(t)witchisintegrBlin]0,1[(t,x)x(exln(xln(t)))continus(t,x)t(exln(xln(t)))continusover[0,1[x(exln(xln(t)))=exln(xln(t))+exxln(t)xln(t)1exxln(t)ex1ln(xln(t))=ln(x)+ln(1ln(t)x)ln(x)ln(t)x⇒∣x(exln(xln(t)))∣⩽exln(xln(t))+1exln(x)+ex.ln(t)x+13ln(t)=g(t)x[1,+[x(exln(xln(t))dt01g(t)dt=4F(x)isC1g(x)=exF(x)g(x)isC1sinceF(x)andexareg(x)=01ln(xln(t))dtg(x)=011.ln(xln(t))dtbypartg(x)=[tln(xln(t))]01+1t.txln(t)dtg(x)=ln(x)+dtxln(t)g(x)=01x(ln(xln(t))dtg(x)=01dtxln(t)g(x)=ln(x)+g(x)g(x)=g(x)+ln(x)giscontinouslimFx(x)=limx01ln(xln(t))dt=limx01dtxln(t)xln(t)xlimx01dtx=limx1x=0sinceG(x)isC1limGx1(x)=G(1)limx101dtxln(t)=01dt1ln(t)u=ln(t)G(1)=0+eu1+u

Leave a Reply

Your email address will not be published. Required fields are marked *