Menu Close

Let-us-define-the-positive-number-n-with-four-digits-a-b-c-and-d-such-that-n-abcd-with-a-b-c-d-Z-1-a-9-0-b-9-0-c-9-and-0-d-9-Let-us-then-say-that-a-cool-number-is-a-four-digit-number-say-n-such-




Question Number 4540 by Yozzii last updated on 06/Feb/16
Let us define the positive number n with four  digits a,b,c and d such that n=abcd  with a,b,c,d∈Z, 1≤a≤9, 0≤b≤9,  0≤c≤9 and 0≤d≤9. Let us then say  that a cool number is a four digit number,  say n, such that the two digit numbers written as  ab and cd are given by ab=r×s and  cd=(r−1)×(s+1) for some non−negative integers  r and s, r≠s. For example, 8081 has   a=8,b=0 and 80=10×8= while   c=8,d=1 and 81=9×9=(10−1)(8+1).  So, for n=8081, r=10 while s=8.  How many n, for 1000≤n≤9999, are cool?    For n∈[1000,9999],n∈Z, how many n exist  so that ab=r×s and cd=r×s+1? Call  such n warm numbers.
Letusdefinethepositivenumbernwithfourdigitsa,b,canddsuchthatn=abcdwitha,b,c,dZ,1a9,0b9,0c9and0d9.Letusthensaythatacoolnumberisafourdigitnumber,sayn,suchthatthetwodigitnumberswrittenasabandcdaregivenbyab=r×sandcd=(r1)×(s+1)forsomenonnegativeintegersrands,rs.Forexample,8081hasa=8,b=0and80=10×8=whilec=8,d=1and81=9×9=(101)(8+1).So,forn=8081,r=10whiles=8.Howmanyn,for1000n9999,arecool?Forn[1000,9999],nZ,howmanynexistsothatab=r×sandcd=r×s+1?Callsuchnwarmnumbers.
Commented by Rasheed Soomro last updated on 06/Feb/16
 For warm number   ab=r×s and cb^(?) =r×s+1?  Or   ab=r×s and cd=r×s+1?  Pl   confirm.  ...............................................................  How many numbers are there,which are  both warm and cool at the same time?  For example             4849   48=8×6  & 49=(8−1)(6+1)            4849    48=8×6  &  49=8×6+1
Forwarmnumberab=r×sandcb?=r×s+1?Orab=r×sandcd=r×s+1?Plconfirm.Howmanynumbersarethere,whicharebothwarmandcoolatthesametime?Forexample484948=8×6&49=(81)(6+1)484948=8×6&49=8×6+1
Commented by Yozzii last updated on 06/Feb/16
Sorry for the typo! It′s cd=r×s+1.
Sorryforthetypo!Itscd=r×s+1.
Answered by Rasheed Soomro last updated on 08/Feb/16
Cool Numbers  Let′s attack the problem from r-s side.        We  have to find number of  pairs (r,s)        with following restrictions:  ^(• ) r×s makes first two digits from left (ab)     and  a≥1,         So,        10≤ r×s≤99............................(i)  ^•  (r−1)(s+1) makes last two digits               00≤ (r−1)(s+1) ≤99.................(ii)  ^• r and s are non-negative integers and r≠s     but as r×s≠0 ( from (i) ),so  r≠0 ∧ s≠0 ,     i-e r and s are positve integers.               r,s ∈ Z^+  with r≠s.......................(iii)  From (i)  10≤ r×s≤99⇒ ((10)/r)≤s≤((99)/r)  But as r,s∈Z^+ , So       ⌈((10)/r)⌉≤s≤⌊((99)/r)⌋..............(iv)  From (ii)   00≤ (r−1)(s+1) ≤99⇒0≤s+1≤((99)/(r−1))         ⇒−1≤s≤((99)/(r−1))−1         ⇒ −1≤s≤((100−r)/(r−1))  But since r,s∈Z^+ ,So           −1≤s≤⌊((100−r)/(r−1))⌋.............(v)  From (iv) &(v)         Max[⌈((10)/r)⌉,−1]≤s≤Min[⌊((99)/r)⌋,⌊((100−r)/(r−1))⌋]  Since r>0  ((10)/r)>−1,  Max[⌈((10)/r)⌉,−1]=⌈((10)/r)⌉       ⌈((10)/r)⌉≤s≤Min[⌊((99)/r)⌋,⌊((100−r)/(r−1))⌋]....(vi)       s≠r................... ....from (iii).....(vii)  From (vi) & (vii)  .........................................................................   ⌈((10)/r)⌉≤s≤Min[⌊((99)/r)⌋,⌊((100−r)/(r−1))⌋] ∧ s≠r...(ix)  .........................................................................  Above  condition determines s,if  we fix r  .  For r=4, s is given by   ⌈((10)/4)⌉≤s≤Min[⌊((99)/4)⌋,⌊((100−4)/(4−1))⌋]   ⌈2.5⌉≤s≤Min[⌊24.75⌋,⌊((96)/3)⌋]   3≤s≤Min[24,32]  3≤s≤24  ∧ s≠4  s=3,5,6,7,...24   Total 21 values  ...................................................  r=1; s=10,11,.....99      ∣ r=31;s=1,2  r=2;s=5,6,...,49              ∣ r=32;s=1,2  r=3;s=4,5,...33               ∣ r=33;s=1,2  r=4;s=3,4^(×) ,...24              ∣ r=34;s=1,2  r=5;s=2,3,4,5^(×) ,...19      ∣ r=35;s=1  r=6;s=2,3,4,5,6^(×) ,...16  ∣r=36;s=1  r=7;s=2,3,..7^(×) ,8,...14  ∣r=37;s=1  r=8;s=2,3,...8^(×) ,...12    (38,1),(39,1)...(50,1)∣  r=9;s=2,3,....9^(×) ,10,11  r=10;s=1,2,...9  r=11;s=1,2,...8  r=12;s=1,2,...8  r=13;s=1,2,...7  r=14;s=1,2,...6  r=15;s=1,2,..,6  r=16;s=1,2...5  r=17;s=1,2,...5  Out of space
CoolNumbersLetsattacktheproblemfromrsside.Wehavetofindnumberofpairs(r,s)withfollowingrestrictions:r×smakesfirsttwodigitsfromleft(ab)anda1,So,10r×s99.(i)(r1)(s+1)makeslasttwodigits00(r1)(s+1)99..(ii)randsarenonnegativeintegersandrsbutasr×s0(from(i)),sor0s0,ierandsarepositveintegers.r,sZ+withrs..(iii)From(i)10r×s9910rs99rButasr,sZ+,So10rs99r..(iv)From(ii)00(r1)(s+1)990s+199r11s99r111s100rr1Butsincer,sZ+,So1s100rr1.(v)From(iv)&(v)Max[10r,1]sMin[99r,100rr1]Sincer>010r>1,Max[10r,1]=10r10rsMin[99r,100rr1].(vi)sr..from(iii)..(vii)From(vi)&(vii).10rsMin[99r,100rr1]sr(ix).Aboveconditiondeterminess,ifwefixr.Forr=4,sisgivenby104sMin[994,100441]2.5sMin[24.75,963]3sMin[24,32]3s24s4s=3,5,6,7,24Total21valuesr=1;s=10,11,..99r=31;s=1,2r=2;s=5,6,,49r=32;s=1,2r=3;s=4,5,33r=33;s=1,2r=4;s=3,4×,24r=34;s=1,2r=5;s=2,3,4,5×,19r=35;s=1r=6;s=2,3,4,5,6×,16r=36;s=1r=7;s=2,3,..7×,8,14r=37;s=1r=8;s=2,3,8×,12(38,1),(39,1)(50,1)r=9;s=2,3,.9×,10,11r=10;s=1,2,9r=11;s=1,2,8r=12;s=1,2,8r=13;s=1,2,7r=14;s=1,2,6r=15;s=1,2,..,6r=16;s=1,25r=17;s=1,2,5Outofspace
Commented by Yozzii last updated on 07/Feb/16
Isn′t it 10≤rs≤99 and 0≤(r−1)(s+1)≤99?
Isntit10rs99and0(r1)(s+1)99?
Commented by Yozzii last updated on 07/Feb/16
Since ab=r×s and cd=(r−1)(s+1)  ⇒cd=r×s+r−s−1=ab+r−s−1  ⇒cd−ab=r−s−1  10≤ab≤99 and 00≤cd≤99  min(cd−ab)=min(cd)−min(ab)                             =00−10                             =−10  max(cd−ab)=max(cd)−min(ab)                              =99−10                              =89  ⇒00−10≤cd−ab≤99−10  −10≤r−s−1≤89  −9≤r−s≤90  s−9≤r≤90+s  From you we have also ((10)/s)≤r≤((99)/s).  Could we plot these inequalities   to get the common region?
Sinceab=r×sandcd=(r1)(s+1)cd=r×s+rs1=ab+rs1cdab=rs110ab99and00cd99min(cdab)=min(cd)min(ab)=0010=10max(cdab)=max(cd)min(ab)=9910=890010cdab991010rs1899rs90s9r90+sFromyouwehavealso10sr99s.Couldweplottheseinequalitiestogetthecommonregion?
Commented by Yozzii last updated on 07/Feb/16
Commented by Yozzii last updated on 07/Feb/16
Commented by Rasheed Soomro last updated on 07/Feb/16
Thanks to mention mistake, I have corrected it.
Thankstomentionmistake,Ihavecorrectedit.
Commented by Rasheed Soomro last updated on 07/Feb/16
NICE  APPROACH!
NICEAPPROACH!
Commented by Rasheed Soomro last updated on 07/Feb/16
Pl do it manually also. I mean without  the help of Wolfram Alpha.
Pldoitmanuallyalso.ImeanwithoutthehelpofWolframAlpha.
Commented by Yozzii last updated on 07/Feb/16
The best thing I know to do  is draw the graphs manually and count  the valid integer pairs...   I lack experience in solving such   inequalities via a shorter method.
ThebestthingIknowtodoisdrawthegraphsmanuallyandcountthevalidintegerpairsIlackexperienceinsolvingsuchinequalitiesviaashortermethod.
Commented by Rasheed Soomro last updated on 08/Feb/16
Thanks for reply.
Thanksforreply.

Leave a Reply

Your email address will not be published. Required fields are marked *