Menu Close

Let-us-generalise-the-result-of-taking-the-inverse-tangent-of-a-complex-number-to-the-form-tan-1-c-id-a-ib-where-a-b-c-d-R-and-i-1-Determine-a-an




Question Number 1895 by Yozzy last updated on 22/Oct/15
Let us generalise the result of taking the inverse tangent of a complex number  to the form                                             tan^(−1) (c+id)=a+ib  where a,b,c,d∈R and i=(√(−1)). Determine a and b respectively in terms  of c and d.
Letusgeneralisetheresultoftakingtheinversetangentofacomplexnumbertotheformtan1(c+id)=a+ibwherea,b,c,dRandi=1.Determineaandbrespectivelyintermsofcandd.
Commented by Rasheed Soomro last updated on 23/Oct/15
tan^(−1) (c+id)=a+ib  ⇔ c+id=tan(a+ib)=((tan a+tan ib)/(1−tan a. tan ib))  Now,                   tan z =((e^(iz) −e^(−iz) )/(e^(iz) +e^(−iz) )) , z∈C  So,          tan ib = ((e^(i(ib)) −e^(−i(ib)) )/(e^(i(ib)) +e^(−i(ib)) )) =((e^(−b) −e^b )/(e^(−b) +e^b ))  Clearly  ′ tan ib′ or′  ((e^(−b) −e^b )/(e^(−b) +e^b )) ′ is real , because b∈R.  And  that  means  tan(a+ib) is real.  So ,               c+id=tan(a+ib)⇒c=tan(a+ib)  ∧ d=0 !!!  But               c+id is given and d is not necessarly zero.  I−E   if a+ib (tan(c+id) is given then d=0                and if c+id is given with d≠0.....  If you see any logical defect pl inform me.  Continue
tan1(c+id)=a+ibc+id=tan(a+ib)=tana+tanib1tana.tanibNow,tanz=eizeizeiz+eiz,zCSo,tanib=ei(ib)ei(ib)ei(ib)+ei(ib)=ebebeb+ebClearlytaniborebebeb+ebisreal,becausebR.Andthatmeanstan(a+ib)isreal.So,c+id=tan(a+ib)c=tan(a+ib)d=0!!!Butc+idisgivenanddisnotnecessarlyzero.IEifa+ib(tan(c+id)isgiventhend=0andifc+idisgivenwithd0..Ifyouseeanylogicaldefectplinformme.Continue
Commented by Yozzy last updated on 23/Oct/15
I appreciate that you′ve attempted the problem . Now I can therefore discuss it.  I believe though that tanib is not necessarily real because of the following bit  of mathematics.   By definition tanx=((sinx)/(cosx)). So, tanib=((sinib)/(cosib)).  The series expansions for sinx,sinhx,coshx and cosx help here.   sinx=x−(x^3 /(3!))+(x^5 /(5!))−(x^7 /(7!))+... ∀x  ∴ sinix=ix−(((ix)^3 )/(3!))+(((ix)^5 )/(5!))−(((ix)^7 )/(7!))+...  sinix=ix+((ix^3 )/(3!))+((ix^5 )/(5!))+((ix^7 )/(7!))+...=i(x+(x^3 /(3!))+(x^5 /(5!))+(x^7 /(7!))+...)  Since sinhx=x+(x^3 /(3!))+(x^5 /(5!))+(x^7 /(7!))+... ∀x  ⇒sinix=isinhx  cosx=1−(x^2 /(2!))+(x^4 /(4!))−(x^6 /(6!))+... ∀x  ∴ cosix=1−((i^2 x^2 )/(2!))+((i^4 x^4 )/(4!))−((i^6 x^6 )/(6!))+...  cosix=1+(x^2 /(2!))+(x^4 /(4!))+(x^6 /(6!))+...  But coshx=1+(x^2 /(2!))+(x^4 /(4!))+(x^6 /(6!))+... ∀x  ∴ cosix=coshx  Thus, tanib=((isinhb)/(coshb))=((i(e^b −e^(−b) ))/(e^b +e^(−b) )).
Iappreciatethatyouveattemptedtheproblem.NowIcanthereforediscussit.Ibelievethoughthattanibisnotnecessarilyrealbecauseofthefollowingbitofmathematics.Bydefinitiontanx=sinxcosx.So,tanib=sinibcosib.Theseriesexpansionsforsinx,sinhx,coshxandcosxhelphere.sinx=xx33!+x55!x77!+xsinix=ix(ix)33!+(ix)55!(ix)77!+sinix=ix+ix33!+ix55!+ix77!+=i(x+x33!+x55!+x77!+)Sincesinhx=x+x33!+x55!+x77!+xsinix=isinhxcosx=1x22!+x44!x66!+xcosix=1i2x22!+i4x44!i6x66!+cosix=1+x22!+x44!+x66!+Butcoshx=1+x22!+x44!+x66!+xcosix=coshxThus,tanib=isinhbcoshb=i(ebeb)eb+eb.
Commented by Rasheed Soomro last updated on 23/Oct/15
Thanks very much!  You are very right! Actually the formula   of  tan z (((e^(iz) −e^(−iz)  )/(e^(iz) +e^(−iz) )))  was misprinted in a book!  The book was not low standard but printing  errors are common here. I used this wrong  formula and reached at wrong result!  Anyway thanks again to correct my mistake.
Thanksverymuch!Youareveryright!Actuallytheformulaoftanz(eizeizeiz+eiz)wasmisprintedinabook!Thebookwasnotlowstandardbutprintingerrorsarecommonhere.Iusedthiswrongformulaandreachedatwrongresult!Anywaythanksagaintocorrectmymistake.
Commented by Yozzy last updated on 23/Oct/15
No problem. I′m here to learn and help too.
Noproblem.Imheretolearnandhelptoo.
Commented by Rasheed Soomro last updated on 23/Oct/15
ThankS.
ThankS.
Answered by Rasheed Soomro last updated on 25/Oct/15
tan^(−1) (c+id)=a+ib   Any of  a  and  b  depends on both c and d:         a =(1/2)tan^(−1) (((2c)/(1−c^2 −d^2 )))                b=(1/(2i))tan^(−1) (((2id)/(1+c^2 +d^2 )))  −−−−−−−−−−−−−−−−−  Proof:  tan^(−1) (c+id)=a+ib ..............................(1)  tan^(−1) (c−id)=a−ib    [∵ tan z^(−) =tan z^(−)   ]......(2)  Adding (1) and  (2)         2a=tan^(−1) (c+id)+tan^(−1) (c−id)              =tan^(−1) (((c+id)+(c−id))/(1−(c+id)(c−id)))              =tan^(−1) ((2c)/(1−(c^2 +d^2 )))  Or a =(1/2)tan^(−1) (((2c)/(1−c^2 −d^2 ))).................I(Proved)  −−−−−−−−−−−−−−−−  Similarly subtracting (2) from (1), we get    2ib=tan^(−1) (c+id)−tan^(−1) (c−id)           =tan^(−1) (((c+id)−(c−id))/(1+(c+id)(c−id)))            =tan^(−1) ((2id)/(1+c^2 +d^2 ))      tan 2ib=((2id)/(1+c^2 +d^2 ))       2ib=tan^(−1) (((2id)/(1+c^2 +d^2 )))          b=(1/(2i))tan^(−1) (((2id)/(1+c^2 +d^2 )))...................II( Proved)  −−−−−−−−−−−−−−−−−−−
tan1(c+id)=a+ibAnyofaandbdependsonbothcandd:a=12tan1(2c1c2d2)b=12itan1(2id1+c2+d2)Proof:tan1(c+id)=a+ib(1)tan1(cid)=aib[tanz=tanz](2)Adding(1)and(2)2a=tan1(c+id)+tan1(cid)=tan1(c+id)+(cid)1(c+id)(cid)=tan12c1(c2+d2)Ora=12tan1(2c1c2d2)..I(Proved)Similarlysubtracting(2)from(1),weget2ib=tan1(c+id)tan1(cid)=tan1(c+id)(cid)1+(c+id)(cid)=tan12id1+c2+d2tan2ib=2id1+c2+d22ib=tan1(2id1+c2+d2)b=12itan1(2id1+c2+d2).II(Proved)
Commented by Yozzy last updated on 23/Oct/15
I would have appreciated a proof of your answer.
Iwouldhaveappreciatedaproofofyouranswer.
Commented by Yozzy last updated on 23/Oct/15
Some calculations I′ve done has interestingly showed that for c=1 and d=1  my result yields both your value for a and Wolfram Alpha′s answer for a.  Two different answers for a were obtained! How does one decide which  value to take?
SomecalculationsIvedonehasinterestinglyshowedthatforc=1andd=1myresultyieldsbothyourvalueforaandWolframAlphasanswerfora.Twodifferentanswersforawereobtained!Howdoesonedecidewhichvaluetotake?
Answered by Yozzy last updated on 23/Oct/15
tan^(−1) (c+id)=a+ib  a,b,c,d∈R.  ∴ c+id=tan(a+ib)=((tana+tanib)/(1−tanatanib))  Now, tanib=itanhb.  ∴ c+id=((tana+itanhb)/(1−itanatanhb))⇒(c+id)(1−itanatanhb)=tana+itanhb  c+dtanatanhb+i(d−ctanatanhb)=tana+itanhb  Equating real and imaginary parts we get     c+dtanatanhb=tana⇒tana(1−dtanhb)=c⇒tana=(c/(1−dtanhb)).......(i)  And    tanhb=d−ctanatanhb⇒tana=((d−tanhb)/(ctanhb))..........(ii)  Since (i)=(ii)⇒ (c/(1−dtanhb))=((d−tanhb)/(ctanhb)). Let ω=tanhb.  ∴ (c/(1−dω))=((d−ω)/(cω))⇒c^2 ω=(1−dω)(d−ω)=d−ω−d^2 ω+dω^2   dω^2 −(d^2 +1+c^2 )ω+d=0  This is a quadratic so      ω=(((1+c^2 +d^2 )±(√((1+c^2 +d^2 )^2 −4d)))/(2d))      ∴  tanhb=(((1+c^2 +d^2 )±(√((1+c^2 +d^2 )^2 −4d)))/(2d))   (d≠0) and certainly (1+c^2 +d^2 )^2 >4d  ∀c,d∈R     Let y=tanh^(−1) x.⇒tanhy=x⇒sinhy=xcoshy  e^y −e^(−y) =xe^y +xe^(−y)   ×e^y : e^(2y) −1=xe^(2y) +x  e^(2y) (1−x)=x+1⇒e^(2y) =((x+1)/(1−x))⇒2y=ln(((1+x)/(1−x)))⇒y=(1/2)ln(((1+x)/(1−x))) ∣x∣<1 (so y is real and defined)  So b=tanh^(−1) [(((1+c^2 +d^2 )±(√((1+c^2 +d^2 )^2 −4d)))/(2d))] with b∈R only if ∣(((1+c^2 +d^2 )±(√((1+c^2 +d^2 )^2 −4d)))/(2d))∣<1  ⇒∣(1+c^2 +d^2 )±(√((1+c^2 +d^2 )^2 −4d))∣<2∣d∣. If we assume this condition is satisfied  we can find a.    dtanhb=(((1+c^2 +d^2 )±(√((1+c^2 +d^2 )^2 −4d)))/2)  1−dtanhb=((2−(1+c^2 +d^2 )±(√((1+c^2 +d^2 )^2 −4d)))/2)  ∴ tana=((2c)/(2−{(1+c^2 +d^2 )±(√((1+c^2 +d^2 )^2 −4d))}))  tana∈(−∞,+∞) so c and d can be such that the above equation is valid  for any real c and d satisfying the condition ∣(1+c^2 +d^2 )±(√((1+c^2 +d^2 )^2 −4d))∣<2∣d∣  ∴ a=tan^(−1) (((2c)/(2−{(1+c^2 +d^2 )±(√((1+c^2 +d^2 )^2 −4d))})))
tan1(c+id)=a+iba,b,c,dR.c+id=tan(a+ib)=tana+tanib1tanatanibNow,tanib=itanhb.c+id=tana+itanhb1itanatanhb(c+id)(1itanatanhb)=tana+itanhbc+dtanatanhb+i(dctanatanhb)=tana+itanhbEquatingrealandimaginarypartswegetc+dtanatanhb=tanatana(1dtanhb)=ctana=c1dtanhb.(i)Andtanhb=dctanatanhbtana=dtanhbctanhb.(ii)Since(i)=(ii)c1dtanhb=dtanhbctanhb.Letω=tanhb.c1dω=dωcωc2ω=(1dω)(dω)=dωd2ω+dω2dω2(d2+1+c2)ω+d=0Thisisaquadraticsoω=(1+c2+d2)±(1+c2+d2)24d2dtanhb=(1+c2+d2)±(1+c2+d2)24d2d(d0)andcertainly(1+c2+d2)2>4dc,dRLety=tanh1x.tanhy=xsinhy=xcoshyeyey=xey+xey×ey:e2y1=xe2y+xe2y(1x)=x+1e2y=x+11x2y=ln(1+x1x)y=12ln(1+x1x)x∣<1(soyisrealanddefined)Sob=tanh1[(1+c2+d2)±(1+c2+d2)24d2d]withbRonlyif(1+c2+d2)±(1+c2+d2)24d2d∣<1⇒∣(1+c2+d2)±(1+c2+d2)24d∣<2d.Ifweassumethisconditionissatisfiedwecanfinda.dtanhb=(1+c2+d2)±(1+c2+d2)24d21dtanhb=2(1+c2+d2)±(1+c2+d2)24d2tana=2c2{(1+c2+d2)±(1+c2+d2)24d}tana(,+)socanddcanbesuchthattheaboveequationisvalidforanyrealcanddsatisfyingthecondition(1+c2+d2)±(1+c2+d2)24d∣<2da=tan1(2c2{(1+c2+d2)±(1+c2+d2)24d})
Commented by Rasheed Soomro last updated on 23/Oct/15
Very intresting! Your work needs  a deep study....
Veryintresting!Yourworkneedsadeepstudy.
Commented by Rasheed Soomro last updated on 23/Oct/15
That means you are only undergraduate! I appreciate   your deep approach at this early stage and offer good  wishes for your future!
Thatmeansyouareonlyundergraduate!Iappreciateyourdeepapproachatthisearlystageandoffergoodwishesforyourfuture!
Commented by Yozzy last updated on 23/Oct/15
Yes! I know this isn′t perfect since this doesn′t give a complete picture I think  of the inverse tangent of complex numbers.   I also haven′t started university as yet so I don′t know much of complex  analysis. I begin next year.
Yes!IknowthisisntperfectsincethisdoesntgiveacompletepictureIthinkoftheinversetangentofcomplexnumbers.IalsohaventstarteduniversityasyetsoIdontknowmuchofcomplexanalysis.Ibeginnextyear.
Commented by 123456 last updated on 23/Oct/15
good lucky :)
goodlucky:)
Commented by Yozzy last updated on 24/Oct/15
Thank you! :D
Thankyou!:D

Leave a Reply

Your email address will not be published. Required fields are marked *