Menu Close

Let-vector-a-b-and-c-such-that-a-b-c-2-and-a-a-c-b-0-find-the-acute-angle-between-a-and-c-




Question Number 136300 by liberty last updated on 20/Mar/21
Let vector a^→  , b^→  and c^→  such that  ∣a^→ ∣=∣b^→ ∣=((∣c^→ ∣)/2) and a^→ ×(a^→ ×c^→ )+b^→ =0  find the acute angle between a^→  and c^→  .
Letvectora,bandcsuchthata∣=∣b∣=c2anda×(a×c)+b=0findtheacuteanglebetweenaandc.
Answered by EDWIN88 last updated on 20/Mar/21
let ∣a^→ ∣=∣b^→ ∣ = k then ∣c^→ ∣  = 2k and let the  angle between a^→  & c^→  is β  ⇒ a^→ ×(a^→ ×c^→ )=(a^→ .c^→ )a^→ −(a^→ .a^→ )c^→   ⇒a^→ ×(a^→ ×c^→ ) = (2k^2  cos β)a^→ −k^2  c^→   Then ⇒b^→  = k^2  (c^→ −2cos β a^→  )  let cos β = m  ⇒ ∣b^→ ∣ = k^2  ∣c^→ −2m a^→ ∣   ⇒k = k^2  (√(4k^2 +4m^2 .k^2 −8m^2 k^2 ))   ⇒(1/k^2 ) = (√(4−4m^2 )) ; 4m^2  = 4 −(1/k^4 )  ⇒ cos β = (√((4k^4 −1)/(4k^4 ))) ; β = arccos (((√(4k^4 −1))/(2k)))  If k=1 ⇒β = arccos (((√3)/2)) → { ((β=30°)),((β=150°)) :}
leta∣=∣b=kthenc=2kandlettheanglebetweena&cisβa×(a×c)=(a.c)a(a.a)ca×(a×c)=(2k2cosβ)ak2cThenb=k2(c2cosβa)letcosβ=mb=k2c2mak=k24k2+4m2.k28m2k21k2=44m2;4m2=41k4cosβ=4k414k4;β=arccos(4k412k)Ifk=1β=arccos(32){β=30°β=150°
Answered by mr W last updated on 20/Mar/21
Commented by mr W last updated on 20/Mar/21
let ∣a∣=∣b∣=s, then ∣c∣=2s  ∣a×c∣=∣a∣∣c∣ sin θ  ∣a×(a×c)∣=∣a∣∣a∣∣c∣ sin θ×sin (π/2)                     =2s^3  sin θ  since a×(a×c)+b=0,  ⇒∣a×(a×c)∣=∣b∣  ⇒2s^3  sin θ=s  ⇒sin θ=(1/(2s^2 ))  ⇒θ=sin^(−1) (1/(2s^2 )) or π−sin^(−1) (1/(2s^2 ))  i.e. the acute angle between a and c is  sin^(−1) (1/(2s^2 ))  if s=1, then θ=(π/6)
leta∣=∣b∣=s,thenc∣=2sa×c∣=∣a∣∣csinθa×(a×c)∣=∣a∣∣a∣∣csinθ×sinπ2=2s3sinθsincea×(a×c)+b=0,⇒∣a×(a×c)∣=∣b2s3sinθ=ssinθ=12s2θ=sin112s2orπsin112s2i.e.theacuteanglebetweenaandcissin112s2ifs=1,thenθ=π6
Answered by mnjuly1970 last updated on 20/Mar/21
  a⊥a×c :     a×(a×c)=−b    ⇒∣a×(a×c)∣=∣b∣       ∣a∣∣a×c∣=∣b∣        ∣a∣∣a∣∣c∣sin(ϕ)=∣b∣          sin(ϕ)=((∣b∣)/(2∣b∣^2 ∣b∣))=(1/(2∣b∣^2 ))     ∣b∣#0 ,0<(1/(∣b∣^2 ))≤2⇒∣b∣≥(1/( (√2)))       ϕ=sin^(−1) ((1/(2∣b∣^2 )))       ϕ=π−sin^(−1) ((1/(2∣b∣^2 )))
aa×c:a×(a×c)=b⇒∣a×(a×c)∣=∣ba∣∣a×c∣=∣ba∣∣a∣∣csin(φ)=∣bsin(φ)=b2b2b=12b2You can't use 'macro parameter character #' in math modeφ=sin1(12b2)φ=πsin1(12b2)

Leave a Reply

Your email address will not be published. Required fields are marked *