Menu Close

Let-x-f-x-e-f-x-0-e-f-x-dx-




Question Number 72296 by naka3546 last updated on 27/Oct/19
Let    x  =  f(x) e^(f(x))         ∫_( 0)  ^( e) f(x) dx  =  ?
Letx=f(x)ef(x)0ef(x)dx=?
Commented by naka3546 last updated on 27/Oct/19
e^(ln x)   =  x
elnx=x
Commented by mr W last updated on 27/Oct/19
Commented by mind is power last updated on 27/Oct/19
Sorry sir  Mr  W i dealt my communt in same time  yours
SorrysirMrWidealtmycommuntinsametimeyours
Commented by mr W last updated on 27/Oct/19
that′s ok. i put some material i found  in wekipedia.
thatsok.iputsomematerialifoundinwekipedia.
Answered by mind is power last updated on 27/Oct/19
∫f(x)dx=[xf(x)]−∫xf′(x)dx  x=f(x)e^(f(x)) ⇒1=(f′(x)+f′(x).f(x))e^(f(x))   ⇒f′(x)=(1/((1+f(x))e^(f(x)) ))=((f(x))/(x(1+f(x))))⇒xf′(x)=((f(x))/(1+f(x)))  ⇒∫f(x)dx=xf(x)−∫((f(x))/(1+f(x)))dx  let u=f(x)  ⇒du=f′(x)dx=((f(x))/(x(1+f(x))))dx  x=f(x)e^(f(x)) =ue^u ⇒du=(u/(ue^u (1+u)))dx⇒dx=((ue^u du)/u).((1+u)/)  ∫((f(x))/(1+f(x)))dx=∫(u/(1+u)).((ue^u du)/u).(1+u)=∫ue^u =(u−1)e^u +c  =(f(x)−1)e^(f(x)) +c=x−e^(f(x)) +c=x(1−(1/(f(x))))+c  ⇒∫f(x)dx=xf(x)−x(1−(1/(f(x))))+c=x(f(x)−1+(1/(f(x))))+c  ∫_0 ^e f(x)dx=e(f(e)−1+(1/(f(e))))  f(e)e^(f(e)) =e=1.e^1 ..z  f(t)=te^t ⇒f′(t)=(t+1)e^t ≥0  ∀t∈IR^+   f(1)=e⇒xe^x =e⇔x∈{1}  z⇒f(e)=1  ∫_0 ^e f(x)dx=e(1−1+(1/1))−lim_(x→0) x(f(x)−1+(1/(f(x))))  (1/(f(x)))=(e^(f(x)) /x)  x(f(x)−1+(1/(f(x))))=x(f(x)−1+(e^(f(x)) /x))=x(f(x)−1)+e^(f(x))   lim_(x→0) x(f(x)−1)+e^(f(x)) =e^(f(0))   f(0)e^(f(0)) =0⇒f(0)=0⇒e^(f(0)) =1  ∫_0 ^e f(x)dx=e−1
f(x)dx=[xf(x)]xf(x)dxx=f(x)ef(x)1=(f(x)+f(x).f(x))ef(x)f(x)=1(1+f(x))ef(x)=f(x)x(1+f(x))xf(x)=f(x)1+f(x)f(x)dx=xf(x)f(x)1+f(x)dxletu=f(x)du=f(x)dx=f(x)x(1+f(x))dxx=f(x)ef(x)=ueudu=uueu(1+u)dxdx=ueuduu.1+uf(x)1+f(x)dx=u1+u.ueuduu.(1+u)=ueu=(u1)eu+c=(f(x)1)ef(x)+c=xef(x)+c=x(11f(x))+cf(x)dx=xf(x)x(11f(x))+c=x(f(x)1+1f(x))+c0ef(x)dx=e(f(e)1+1f(e))f(e)ef(e)=e=1.e1..zf(t)=tetf(t)=(t+1)et0tIR+f(1)=exex=ex{1}zf(e)=10ef(x)dx=e(11+11)limx0x(f(x)1+1f(x))1f(x)=ef(x)xx(f(x)1+1f(x))=x(f(x)1+ef(x)x)=x(f(x)1)+ef(x)limx0x(f(x)1)+ef(x)=ef(0)f(0)ef(0)=0f(0)=0ef(0)=10ef(x)dx=e1
Commented by mr W last updated on 27/Oct/19
please check again sir. the result  should be e−1.
pleasecheckagainsir.theresultshouldbee1.
Commented by mr W last updated on 27/Oct/19
Commented by mind is power last updated on 27/Oct/19
yeah i got it x(f(x)−1+(1/(f(x)))) in 0 i did zero  but its not[defind cause f(0)=0  we should tack lim
yeahigotitx(f(x)1+1f(x))in0ididzerobutitsnot[defindcausef(0)=0weshouldtacklim

Leave a Reply

Your email address will not be published. Required fields are marked *