Question Number 140104 by EnterUsername last updated on 04/May/21
$$\mathrm{Let}\:{z}=\mathrm{1}+\mathrm{cos}\left(\mathrm{10}\pi/\mathrm{9}\right)+{i}\mathrm{sin}\left(\mathrm{10}\pi/\mathrm{9}\right).\:\mathrm{Then} \\ $$$$\left(\mathrm{A}\right)\:\mid{z}\mid=\mathrm{2cos}\left(\frac{\mathrm{2}\pi}{\mathrm{9}}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\mathrm{arg}\:{z}=\frac{\mathrm{8}\pi}{\mathrm{9}} \\ $$$$\left(\mathrm{C}\right)\:\mid{z}\mid=\mathrm{2cos}\left(\frac{\mathrm{4}\pi}{\mathrm{9}}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\mathrm{arg}\:{z}=\frac{\mathrm{5}\pi}{\mathrm{9}} \\ $$
Commented by EnterUsername last updated on 04/May/21
$$\mathrm{One}\:\mathrm{or}\:\mathrm{more}\:\mathrm{answers}\:\mathrm{may}\:\mathrm{be}\:\mathrm{correct}. \\ $$
Answered by MJS_new last updated on 04/May/21
$$\mathrm{cos}\:\frac{\mathrm{10}\pi}{\mathrm{9}}\:+\mathrm{i}\:\mathrm{sin}\:\frac{\mathrm{10}\pi}{\mathrm{9}}\:=−\mathrm{cos}\:\frac{\pi}{\mathrm{9}}\:−\mathrm{i}\:\mathrm{sin}\:\frac{\pi}{\mathrm{9}} \\ $$$$\mid{z}\mid=\sqrt{\left(\mathrm{1}−\mathrm{cos}\:\theta\right)^{\mathrm{2}} +\left(−\mathrm{sin}\:\theta\right)^{\mathrm{2}} }=\sqrt{\mathrm{2}−\mathrm{2cos}\:\theta}= \\ $$$$=\mathrm{2}\mid\mathrm{sin}\:\frac{\theta}{\mathrm{2}}\mid=\mathrm{2sin}\:\frac{\pi}{\mathrm{18}}\:=\mathrm{2cos}\:\frac{\mathrm{4}\pi}{\mathrm{9}} \\ $$$$\mathrm{tan}\:\left(\mathrm{arg}\:{z}\right)=\frac{−\mathrm{sin}\:\theta}{\mathrm{1}−\mathrm{cos}\:\theta}=−\mathrm{cot}\:\frac{\theta}{\mathrm{2}}\:=−\mathrm{cot}\:\frac{\pi}{\mathrm{18}}\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{arg}\:{z}\:=\frac{\mathrm{5}\pi}{\mathrm{9}} \\ $$
Commented by EnterUsername last updated on 04/May/21
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Sir} \\ $$$$\mathrm{arg}\:{z}=−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{cot}\frac{\pi}{\mathrm{18}}\right)=\frac{\pi}{\mathrm{2}}+\mathrm{cot}^{−\mathrm{1}} \left(\mathrm{cot}\frac{\pi}{\mathrm{18}}\right)=\frac{\pi}{\mathrm{2}}+\frac{\pi}{\mathrm{18}}=\frac{\mathrm{5}\pi}{\mathrm{9}} \\ $$$$\mathrm{Understood}\:! \\ $$