Menu Close

Let-z-1-cos-10pi-9-isin-10pi-9-Then-A-z-2cos-2pi-9-B-arg-z-8pi-9-C-z-2cos-4pi-9-D-arg-z-5pi-9-




Question Number 140104 by EnterUsername last updated on 04/May/21
Let z=1+cos(10π/9)+isin(10π/9). Then  (A) ∣z∣=2cos(((2π)/9))                     (B) arg z=((8π)/9)  (C) ∣z∣=2cos(((4π)/9))                     (D) arg z=((5π)/9)
Letz=1+cos(10π/9)+isin(10π/9).Then(A)z∣=2cos(2π9)(B)argz=8π9(C)z∣=2cos(4π9)(D)argz=5π9
Commented by EnterUsername last updated on 04/May/21
One or more answers may be correct.
Oneormoreanswersmaybecorrect.
Answered by MJS_new last updated on 04/May/21
cos ((10π)/9) +i sin ((10π)/9) =−cos (π/9) −i sin (π/9)  ∣z∣=(√((1−cos θ)^2 +(−sin θ)^2 ))=(√(2−2cos θ))=  =2∣sin (θ/2)∣=2sin (π/(18)) =2cos ((4π)/9)  tan (arg z)=((−sin θ)/(1−cos θ))=−cot (θ/2) =−cot (π/(18)) ⇒  ⇒ arg z =((5π)/9)
cos10π9+isin10π9=cosπ9isinπ9z∣=(1cosθ)2+(sinθ)2=22cosθ==2sinθ2∣=2sinπ18=2cos4π9tan(argz)=sinθ1cosθ=cotθ2=cotπ18argz=5π9
Commented by EnterUsername last updated on 04/May/21
Thank you Sir  arg z=−tan^(−1) (cot(π/(18)))=(π/2)+cot^(−1) (cot(π/(18)))=(π/2)+(π/(18))=((5π)/9)  Understood !
ThankyouSirargz=tan1(cotπ18)=π2+cot1(cotπ18)=π2+π18=5π9Understood!

Leave a Reply

Your email address will not be published. Required fields are marked *