Menu Close

Let-z-and-w-be-two-complex-numbers-such-that-z-1-w-1-and-z-iw-z-iw-2-then-find-the-value-of-z-




Question Number 230 by ssahoo last updated on 25/Jan/15
Let z and w be two complex numbers such that   ∣z∣≤1 , ∣w∣≤1 and ∣z+iw∣=∣z−iw^(−) ∣=2,  then find the value of z.
Letzandwbetwocomplexnumberssuchthatz∣⩽1,w∣⩽1andz+iw∣=∣ziw∣=2,thenfindthevalueofz.
Commented by 123456 last updated on 16/Dec/14
∣z+iw∣≤∣z∣+∣w∣≤2  ∣z−iw^� ∣≤∣z∣+∣w^� ∣=∣z∣+∣w∣≤2  ∣z+iw∣=∣z−iw^� ∣=2  ∣z∣≤1,∣w∣≤1  ∣z∣=∣w∣=1  z=1,w=−i  z+iw=1−i^2 =1+1=2  z−iw^� =1−i^2 =1+1=2
z+iw∣⩽∣z+w∣⩽2ziw¯∣⩽∣z+w¯∣=∣z+w∣⩽2z+iw∣=∣ziw¯∣=2z∣⩽1,w∣⩽1z∣=∣w∣=1z=1,w=iz+iw=1i2=1+1=2ziw¯=1i2=1+1=2
Answered by prakash jain last updated on 16/Dec/14
With the arugments in comments  z=1 and w=−i  or z=−1 and w=i  so the possible values of z are 1 and −1
Withthearugmentsincommentsz=1andw=iorz=1andw=isothepossiblevaluesofzare1and1