Menu Close

Let-z-Ax-2-Bxy-Cy-2-Find-conditions-on-the-constants-A-B-C-that-ensure-that-the-point-0-0-0-is-a-i-local-minimum-ii-local-maximum-ii-saddle-point-




Question Number 4772 by Yozzii last updated on 07/Mar/16
Let z=Ax^2 +Bxy+Cy^2 . Find conditions  on the constants A,B,C that ensure  that the point (0,0,0) is a   (i) local minimum,  (ii) local maximum,  (ii) saddle point.
Letz=Ax2+Bxy+Cy2.FindconditionsontheconstantsA,B,Cthatensurethatthepoint(0,0,0)isa(i)localminimum,(ii)localmaximum,(ii)saddlepoint.
Commented by 123456 last updated on 09/Mar/16
z=Ax^2 +Bxy+Cy^2   z_x =2Ax+By  z_y =Bx+2Cy  z_(xx) =2A  z_(yy) =2C  z_(xy) =0
z=Ax2+Bxy+Cy2zx=2Ax+Byzy=Bx+2Cyzxx=2Azyy=2Czxy=0
Commented by 123456 last updated on 09/Mar/16
H(x,y)= [((∂^2 f/∂x^2 ),(∂^2 f/(∂x∂y))),((∂^2 f/(∂y∂x)),(∂^2 f/∂y^2 )) ]= [((2A),0),(0,(2C)) ]  (∂f/∂x)=2Ax+B  (∂f/∂y)=2Cy+B  (∂f/∂x)=0⇔2Ax+B=0⇔x=−(B/(2A))  (∂f/∂y)=0⇔2Cx+B=0⇔x=−(B/(2C))  A(x,y)=(∂^2 f/∂x^2 )=2A,Δ(x,y)=4AC  A(x,y)>0,Δ(x,y)>0⇒A>0,C>0  A(x,y)<0,Δ(x,y)>0⇒A<0,C<0  Δ(x,y)<0⇒A<0,C>0∨A>0,C<0
H(x,y)=[2fx22fxy2fyx2fy2]=[2A002C]fx=2Ax+Bfy=2Cy+Bfx=02Ax+B=0x=B2Afy=02Cx+B=0x=B2CA(x,y)=2fx2=2A,Δ(x,y)=4ACA(x,y)>0,Δ(x,y)>0A>0,C>0A(x,y)<0,Δ(x,y)>0A<0,C<0Δ(x,y)<0A<0,C>0A>0,C<0
Commented by Dnilka228 last updated on 10/Mar/16
Δ(x^y )<a⇒0>A,X<Y if Y=1  Δ(y^x )>a⇒A<(√(a+b))<m
Δ(xy)<a0>A,X<YifY=1Δ(yx)>aA<a+b<m
Commented by Dnilka228 last updated on 10/Mar/16
α>β  α=?  β=α−2  α−2=1  β=3  α=?
α>βα=?β=α2α2=1β=3α=?

Leave a Reply

Your email address will not be published. Required fields are marked *