Menu Close

Let-z-Ax-2-Bxy-Cy-2-Find-conditions-on-the-constants-A-B-C-that-ensure-that-the-point-0-0-0-is-a-i-local-minimum-ii-local-maximum-ii-saddle-point-




Question Number 4772 by Yozzii last updated on 07/Mar/16
Let z=Ax^2 +Bxy+Cy^2 . Find conditions  on the constants A,B,C that ensure  that the point (0,0,0) is a   (i) local minimum,  (ii) local maximum,  (ii) saddle point.
$${Let}\:{z}={Ax}^{\mathrm{2}} +{Bxy}+{Cy}^{\mathrm{2}} .\:{Find}\:{conditions} \\ $$$${on}\:{the}\:{constants}\:{A},{B},{C}\:{that}\:{ensure} \\ $$$${that}\:{the}\:{point}\:\left(\mathrm{0},\mathrm{0},\mathrm{0}\right)\:{is}\:{a}\: \\ $$$$\left({i}\right)\:{local}\:{minimum}, \\ $$$$\left({ii}\right)\:{local}\:{maximum}, \\ $$$$\left({ii}\right)\:{saddle}\:{point}. \\ $$$$ \\ $$$$ \\ $$
Commented by 123456 last updated on 09/Mar/16
z=Ax^2 +Bxy+Cy^2   z_x =2Ax+By  z_y =Bx+2Cy  z_(xx) =2A  z_(yy) =2C  z_(xy) =0
$${z}={Ax}^{\mathrm{2}} +{Bxy}+{Cy}^{\mathrm{2}} \\ $$$${z}_{{x}} =\mathrm{2}{Ax}+{By} \\ $$$${z}_{{y}} ={Bx}+\mathrm{2}{Cy} \\ $$$${z}_{{xx}} =\mathrm{2}{A} \\ $$$${z}_{{yy}} =\mathrm{2}{C} \\ $$$${z}_{{xy}} =\mathrm{0} \\ $$
Commented by 123456 last updated on 09/Mar/16
H(x,y)= [((∂^2 f/∂x^2 ),(∂^2 f/(∂x∂y))),((∂^2 f/(∂y∂x)),(∂^2 f/∂y^2 )) ]= [((2A),0),(0,(2C)) ]  (∂f/∂x)=2Ax+B  (∂f/∂y)=2Cy+B  (∂f/∂x)=0⇔2Ax+B=0⇔x=−(B/(2A))  (∂f/∂y)=0⇔2Cx+B=0⇔x=−(B/(2C))  A(x,y)=(∂^2 f/∂x^2 )=2A,Δ(x,y)=4AC  A(x,y)>0,Δ(x,y)>0⇒A>0,C>0  A(x,y)<0,Δ(x,y)>0⇒A<0,C<0  Δ(x,y)<0⇒A<0,C>0∨A>0,C<0
$${H}\left({x},{y}\right)=\begin{bmatrix}{\frac{\partial^{\mathrm{2}} {f}}{\partial{x}^{\mathrm{2}} }}&{\frac{\partial^{\mathrm{2}} {f}}{\partial{x}\partial{y}}}\\{\frac{\partial^{\mathrm{2}} {f}}{\partial{y}\partial{x}}}&{\frac{\partial^{\mathrm{2}} {f}}{\partial{y}^{\mathrm{2}} }}\end{bmatrix}=\begin{bmatrix}{\mathrm{2}{A}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{2}{C}}\end{bmatrix} \\ $$$$\frac{\partial{f}}{\partial{x}}=\mathrm{2}{Ax}+{B} \\ $$$$\frac{\partial{f}}{\partial{y}}=\mathrm{2}{Cy}+{B} \\ $$$$\frac{\partial{f}}{\partial{x}}=\mathrm{0}\Leftrightarrow\mathrm{2}{Ax}+{B}=\mathrm{0}\Leftrightarrow{x}=−\frac{{B}}{\mathrm{2}{A}} \\ $$$$\frac{\partial{f}}{\partial{y}}=\mathrm{0}\Leftrightarrow\mathrm{2}{Cx}+{B}=\mathrm{0}\Leftrightarrow{x}=−\frac{{B}}{\mathrm{2}{C}} \\ $$$${A}\left({x},{y}\right)=\frac{\partial^{\mathrm{2}} {f}}{\partial{x}^{\mathrm{2}} }=\mathrm{2}{A},\Delta\left({x},{y}\right)=\mathrm{4}{AC} \\ $$$${A}\left({x},{y}\right)>\mathrm{0},\Delta\left({x},{y}\right)>\mathrm{0}\Rightarrow{A}>\mathrm{0},{C}>\mathrm{0} \\ $$$${A}\left({x},{y}\right)<\mathrm{0},\Delta\left({x},{y}\right)>\mathrm{0}\Rightarrow{A}<\mathrm{0},{C}<\mathrm{0} \\ $$$$\Delta\left({x},{y}\right)<\mathrm{0}\Rightarrow{A}<\mathrm{0},{C}>\mathrm{0}\vee{A}>\mathrm{0},{C}<\mathrm{0} \\ $$
Commented by Dnilka228 last updated on 10/Mar/16
Δ(x^y )<a⇒0>A,X<Y if Y=1  Δ(y^x )>a⇒A<(√(a+b))<m
$$\Delta\left({x}^{{y}} \right)<{a}\Rightarrow\mathrm{0}>{A},{X}<{Y}\:{if}\:{Y}=\mathrm{1} \\ $$$$\Delta\left({y}^{{x}} \right)>{a}\Rightarrow{A}<\sqrt{{a}+{b}}<{m} \\ $$$$ \\ $$
Commented by Dnilka228 last updated on 10/Mar/16
α>β  α=?  β=α−2  α−2=1  β=3  α=?
$$\alpha>\beta \\ $$$$\alpha=? \\ $$$$\beta=\alpha−\mathrm{2} \\ $$$$\alpha−\mathrm{2}=\mathrm{1} \\ $$$$\beta=\mathrm{3} \\ $$$$\alpha=? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *