Question Number 139118 by EnterUsername last updated on 22/Apr/21
$$\mathrm{Let}\:{z}\:\mathrm{be}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{number}.\:\mathrm{If}\:\mid{z}+\mathrm{1}\mid=\mid{z}−\mathrm{1}\mid \\ $$$$\mathrm{and}\:\mathrm{arg}\left(\frac{{z}−\mathrm{1}}{{z}+\mathrm{1}}\right)=\frac{\pi}{\mathrm{4}}.\:\mathrm{Then}\:{z}\:\mathrm{is}\:?\: \\ $$
Answered by qaz last updated on 22/Apr/21
$$\mid{z}+\mathrm{1}\mid=\mid{z}−\mathrm{1}\mid \\ $$$$\Rightarrow{z}={a}+{bi}={bi} \\ $$$${arg}\left(\frac{{bi}−\mathrm{1}}{{bi}+\mathrm{1}}\right)={arg}\left(\frac{\left({bi}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{1}−{b}^{\mathrm{2}} }\right)={arg}\left(\frac{\mathrm{1}−{b}^{\mathrm{2}} −\mathrm{2}{ib}}{\mathrm{1}−{b}^{\mathrm{2}} }\right) \\ $$$$=\mathrm{tan}^{−\mathrm{1}} \frac{−\mathrm{2}{b}}{\mathrm{1}−{b}^{\mathrm{2}} }=\frac{\pi}{\mathrm{4}} \\ $$$$\mathrm{1}−{b}^{\mathrm{2}} =−\mathrm{2}{b} \\ $$$$\Rightarrow{b}=\mathrm{1}\pm\sqrt{\mathrm{2}} \\ $$$$\Rightarrow{z}=\left(\mathrm{1}\pm\sqrt{\mathrm{2}}\right){i} \\ $$
Commented by mr W last updated on 22/Apr/21
$${i}\:{think}\:{only}\:{z}=\left(\mathrm{1}+\sqrt{\mathrm{2}}\right){i}\:{is}\:{solution}. \\ $$$${because}\:{with}\:{z}=\left(\mathrm{1}−\sqrt{\mathrm{2}}\right){i}: \\ $$$${arg}\:\left(\frac{{z}−\mathrm{1}}{{z}+\mathrm{1}}\right)=\frac{\mathrm{3}\pi}{\mathrm{4}}\neq\frac{\pi}{\mathrm{4}} \\ $$
Commented by EnterUsername last updated on 22/Apr/21
$${Thanks}\:{Sirs} \\ $$