Menu Close

Let-z-be-a-complex-number-If-z-1-z-1-and-arg-z-1-z-1-pi-4-Then-z-is-




Question Number 139118 by EnterUsername last updated on 22/Apr/21
Let z be a complex number. If ∣z+1∣=∣z−1∣  and arg(((z−1)/(z+1)))=(π/4). Then z is ?
Letzbeacomplexnumber.Ifz+1∣=∣z1andarg(z1z+1)=π4.Thenzis?
Answered by qaz last updated on 22/Apr/21
∣z+1∣=∣z−1∣  ⇒z=a+bi=bi  arg(((bi−1)/(bi+1)))=arg((((bi−1)^2 )/(1−b^2 )))=arg(((1−b^2 −2ib)/(1−b^2 )))  =tan^(−1) ((−2b)/(1−b^2 ))=(π/4)  1−b^2 =−2b  ⇒b=1±(√2)  ⇒z=(1±(√2))i
z+1∣=∣z1z=a+bi=biarg(bi1bi+1)=arg((bi1)21b2)=arg(1b22ib1b2)=tan12b1b2=π41b2=2bb=1±2z=(1±2)i
Commented by mr W last updated on 22/Apr/21
i think only z=(1+(√2))i is solution.  because with z=(1−(√2))i:  arg (((z−1)/(z+1)))=((3π)/4)≠(π/4)
ithinkonlyz=(1+2)iissolution.becausewithz=(12)i:arg(z1z+1)=3π4π4
Commented by EnterUsername last updated on 22/Apr/21
Thanks Sirs
ThanksSirs

Leave a Reply

Your email address will not be published. Required fields are marked *