Menu Close

let-z-from-C-prove-that-arcsinz-iln-iz-1-z-2-arccosz-iln-z-z-2-1-




Question Number 73473 by mathmax by abdo last updated on 13/Nov/19
let z from C prove that   arcsinz=−iln(iz+(√(1−z^2 )))  arccosz =−iln(z+(√(z^2 −1)))
letzfromCprovethatarcsinz=iln(iz+1z2)arccosz=iln(z+z21)
Commented by mathmax by abdo last updated on 15/Nov/19
we have (d/dz)(arcsinz)=(1/( (√(1−z^2 )))) and(d/dz)(−iln(iz+(√(1−z^2 )))  =−i×((i−((2z)/(2(√(1−z^2 )))))/(iz+(√(1−z^2 )))) =−i×(((i(√(1−z^2 ))−z)/( (√(1−z^2 ))))/(iz+(√(1−z^2 )))) =((iz+(√(1−z^2 )))/( (√(1−z^2 ))(iz+(√(1−z^2 )))))  =(1/( (√(1−z^2 )))) ⇒arcsinz =−iln(iz +(√(1−z^2 ))) +c  z=0 ⇒0=−iln(1)+c =0+c ⇒c=0 ⇒arcsin(z)=−iln(iz+(√(1−z^2 )))  and we use the same method for  arcosz =−iln(z+(√(z^2 −1))).
wehaveddz(arcsinz)=11z2andddz(iln(iz+1z2)=i×i2z21z2iz+1z2=i×i1z2z1z2iz+1z2=iz+1z21z2(iz+1z2)=11z2arcsinz=iln(iz+1z2)+cz=00=iln(1)+c=0+cc=0arcsin(z)=iln(iz+1z2)andweusethesamemethodforarcosz=iln(z+z21).

Leave a Reply

Your email address will not be published. Required fields are marked *