Menu Close

let-z-from-C-prove-that-arcsinz-iln-iz-1-z-2-arccosz-iln-z-z-2-1-




Question Number 73473 by mathmax by abdo last updated on 13/Nov/19
let z from C prove that   arcsinz=−iln(iz+(√(1−z^2 )))  arccosz =−iln(z+(√(z^2 −1)))
$${let}\:{z}\:{from}\:{C}\:{prove}\:{that}\: \\ $$$${arcsinz}=−{iln}\left({iz}+\sqrt{\mathrm{1}−{z}^{\mathrm{2}} }\right) \\ $$$${arccosz}\:=−{iln}\left({z}+\sqrt{{z}^{\mathrm{2}} −\mathrm{1}}\right) \\ $$
Commented by mathmax by abdo last updated on 15/Nov/19
we have (d/dz)(arcsinz)=(1/( (√(1−z^2 )))) and(d/dz)(−iln(iz+(√(1−z^2 )))  =−i×((i−((2z)/(2(√(1−z^2 )))))/(iz+(√(1−z^2 )))) =−i×(((i(√(1−z^2 ))−z)/( (√(1−z^2 ))))/(iz+(√(1−z^2 )))) =((iz+(√(1−z^2 )))/( (√(1−z^2 ))(iz+(√(1−z^2 )))))  =(1/( (√(1−z^2 )))) ⇒arcsinz =−iln(iz +(√(1−z^2 ))) +c  z=0 ⇒0=−iln(1)+c =0+c ⇒c=0 ⇒arcsin(z)=−iln(iz+(√(1−z^2 )))  and we use the same method for  arcosz =−iln(z+(√(z^2 −1))).
$${we}\:{have}\:\frac{{d}}{{dz}}\left({arcsinz}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{z}^{\mathrm{2}} }}\:{and}\frac{{d}}{{dz}}\left(−{iln}\left({iz}+\sqrt{\mathrm{1}−{z}^{\mathrm{2}} }\right)\right. \\ $$$$=−{i}×\frac{{i}−\frac{\mathrm{2}{z}}{\mathrm{2}\sqrt{\mathrm{1}−{z}^{\mathrm{2}} }}}{{iz}+\sqrt{\mathrm{1}−{z}^{\mathrm{2}} }}\:=−{i}×\frac{\frac{{i}\sqrt{\mathrm{1}−{z}^{\mathrm{2}} }−{z}}{\:\sqrt{\mathrm{1}−{z}^{\mathrm{2}} }}}{{iz}+\sqrt{\mathrm{1}−{z}^{\mathrm{2}} }}\:=\frac{{iz}+\sqrt{\mathrm{1}−{z}^{\mathrm{2}} }}{\:\sqrt{\mathrm{1}−{z}^{\mathrm{2}} }\left({iz}+\sqrt{\mathrm{1}−{z}^{\mathrm{2}} }\right)} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{z}^{\mathrm{2}} }}\:\Rightarrow{arcsinz}\:=−{iln}\left({iz}\:+\sqrt{\mathrm{1}−{z}^{\mathrm{2}} }\right)\:+{c} \\ $$$${z}=\mathrm{0}\:\Rightarrow\mathrm{0}=−{iln}\left(\mathrm{1}\right)+{c}\:=\mathrm{0}+{c}\:\Rightarrow{c}=\mathrm{0}\:\Rightarrow{arcsin}\left({z}\right)=−{iln}\left({iz}+\sqrt{\mathrm{1}−{z}^{\mathrm{2}} }\right) \\ $$$${and}\:{we}\:{use}\:{the}\:{same}\:{method}\:{for} \\ $$$${arcosz}\:=−{iln}\left({z}+\sqrt{{z}^{\mathrm{2}} −\mathrm{1}}\right). \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *