letf-x-x-3-arctan-pi-x-1-calculate-f-n-x-2-calculate-f-n-1-3-developp-f-at-integer-serie- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 136370 by mathmax by abdo last updated on 21/Mar/21 letf(x)=x3arctan(πx)1)calculatef(n)(x)2)calculatef(n)(1)3)developpfatintegerserie Answered by mathmax by abdo last updated on 22/Mar/21 1)f(x)=x3arctan(πx)ifx>0⇒f(x)=x3(π2−arctan(xπ))=π2x3−x3arctan(xπ)=u(x)−v(x)⇒f(n)=u(n)−v(n)u(x)=π2x3⇒u(1)x)=32πx2,u(2)(x)=3πxandu(3)(x)=3πv(x)=x3arctan(xπ)⇒v(n)(x)=∑k=0nCnk(x3)(k)(arctan(xπ))(n−k)=Cn0x3(arctan(xπ))(n)+Cn13x2(arctan(xπ))(n−1)+Cn26x(arctan(xπ))(n−2)+Cn36(arctan(xπ))(n−3)wehave(arctan(xπ))(1)=1π(1+x2π2)=πx2+π2=π(x−iπ)(x+iπ)=π(1x−iπ−1x+iπ).12iπ=12i(1x−iπ−1x+iπ)⇒(arctan(xπ))(m)=12i((−1)m−1(m−1)!(x−iπ)m−(−1)m−1(m−1)!(x+iπ)m)=(−1)m−1(m−1)!2i((x+iπ)m−(x−iπ)m(x2+π2)m)=(−1)m−1(m−1)!Im((x+iπ))m(x2+π2)m⇒v(n)(x)=Cnox3.(−1)n−1(n−1)!Im((x+iπ)))n(x2+π2)n+3Cn1x2.(−1)n−2(n−2)!Im((x+iπ))n−1(x2+π2)n−1+6Cn2x.(−1)n−3(n−3)!Im((x+iπ))n−2(x2+π2)n−3+6Cn3.(−1)n−4(n−4)!Im((x+iπ)))n−3(x2+π2)n−3andf(n)(x)=u(n)(x)+v(n)(x)⇒f(n)(1)=u(n)(1)+v(n)(1)…. Commented by mathmax by abdo last updated on 22/Mar/21 ifx<0wedoch.x=−t⇒f(x)=f(−t)=(−t)3arctan(π−t)=t3arctan(πt)=t3(π2−arctant)=−x3(π2+arctan(x))… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-70826Next Next post: Question-5297 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.