Menu Close

letf-x-x-3-arctan-pi-x-1-calculate-f-n-x-2-calculate-f-n-1-3-developp-f-at-integer-serie-




Question Number 136370 by mathmax by abdo last updated on 21/Mar/21
letf(x)=x^3  arctan((π/x))  1) calculate f^((n)) (x)  2)calculate f^((n)) (1)  3) developp f at integer serie
letf(x)=x3arctan(πx)1)calculatef(n)(x)2)calculatef(n)(1)3)developpfatintegerserie
Answered by mathmax by abdo last updated on 22/Mar/21
1)f(x)=x^3  arctan((π/x))  if x>0  ⇒f(x)=x^3 ((π/2)−arctan((x/π)))  =(π/2)x^3 −x^3  arctan((x/π)) =u(x)−v(x) ⇒f^((n)) =u^((n)) −v^((n))   u(x)=(π/2)x^3  ⇒u^((1)) x)=(3/2)πx^2  ,u^((2)) (x)=3πx and u^((3)) (x)=3π  v(x)=x^3  arctan((x/π))⇒v^((n)) (x)=Σ_(k=0) ^n C_n ^k  (x^3 )^((k))   (arctan((x/π)))^((n−k))   =C_n ^0  x^3 (arctan((x/π)))^((n))  +C_n ^1 3x^2 (arctan((x/π)))^((n−1))   +C_n ^2 6x (arctan((x/π)))^((n−2)) +C_n ^3  6(arctan((x/π)))^((n−3))   we have (arctan((x/π)))^((1))  =(1/(π(1+(x^2 /π^2 )))) =(π/(x^2  +π^2 ))  =(π/((x−iπ)(x+iπ)))=π((1/(x−iπ))−(1/(x+iπ))).(1/(2iπ))=(1/(2i))((1/(x−iπ))−(1/(x+iπ)))  ⇒(arctan((x/π)))^((m))  =(1/(2i))( (((−1)^(m−1) (m−1)!)/((x−iπ)^m ))−(((−1)^(m−1) (m−1)!)/((x+iπ)^m )))  =(((−1)^(m−1) (m−1)!)/(2i))((((x+iπ)^m −(x−iπ)^m )/((x^2  +π^2 )^m )))  =(((−1)^(m−1) (m−1)! Im((x+iπ))^m )/((x^2  +π^2 )^m )) ⇒  v^((n)) (x)=C_n ^o  x^(3 ) .(((−1)^(n−1) (n−1)!Im((x+iπ)))^n )/((x^2  +π^2 )^n ))  +3C_n ^(1 )  x^2   .(((−1)^(n−2) (n−2)! Im((x+iπ))^(n−1) )/((x^2  +π^2 )^(n−1) ))  +6C_n ^2  x   .(((−1)^(n−3) (n−3)!Im((x+iπ))^(n−2) )/((x^2  +π^2 )^(n−3) ))  +6 C_n ^3  .(((−1)^(n−4) (n−4)!Im((x+iπ)))^(n−3) )/((x^2  +π^2 )^(n−3) ))  and f^((n)) (x)=u^((n)) (x)+v^((n)) (x) ⇒  f^((n)) (1)=u^((n)) (1)+v^((n)) (1)....
1)f(x)=x3arctan(πx)ifx>0f(x)=x3(π2arctan(xπ))=π2x3x3arctan(xπ)=u(x)v(x)f(n)=u(n)v(n)u(x)=π2x3u(1)x)=32πx2,u(2)(x)=3πxandu(3)(x)=3πv(x)=x3arctan(xπ)v(n)(x)=k=0nCnk(x3)(k)(arctan(xπ))(nk)=Cn0x3(arctan(xπ))(n)+Cn13x2(arctan(xπ))(n1)+Cn26x(arctan(xπ))(n2)+Cn36(arctan(xπ))(n3)wehave(arctan(xπ))(1)=1π(1+x2π2)=πx2+π2=π(xiπ)(x+iπ)=π(1xiπ1x+iπ).12iπ=12i(1xiπ1x+iπ)(arctan(xπ))(m)=12i((1)m1(m1)!(xiπ)m(1)m1(m1)!(x+iπ)m)=(1)m1(m1)!2i((x+iπ)m(xiπ)m(x2+π2)m)=(1)m1(m1)!Im((x+iπ))m(x2+π2)mv(n)(x)=Cnox3.(1)n1(n1)!Im((x+iπ)))n(x2+π2)n+3Cn1x2.(1)n2(n2)!Im((x+iπ))n1(x2+π2)n1+6Cn2x.(1)n3(n3)!Im((x+iπ))n2(x2+π2)n3+6Cn3.(1)n4(n4)!Im((x+iπ)))n3(x2+π2)n3andf(n)(x)=u(n)(x)+v(n)(x)f(n)(1)=u(n)(1)+v(n)(1).
Commented by mathmax by abdo last updated on 22/Mar/21
if x<0 we do ch .x=−t ⇒f(x)=f(−t)=(−t)^3  arctan((π/(−t)))  =t^3  arctan((π/t)) =t^3 ((π/2)−arctant) =−x^3 ((π/2) +arctan(x))...
ifx<0wedoch.x=tf(x)=f(t)=(t)3arctan(πt)=t3arctan(πt)=t3(π2arctant)=x3(π2+arctan(x))

Leave a Reply

Your email address will not be published. Required fields are marked *