Question Number 1672 by 123456 last updated on 30/Aug/15

Answered by Rasheed Soomro last updated on 01/Sep/15
![Case−1 When A∩B=∅ , ∣ A∩B ∣=0 SubCase (a) At least one of A and B is nonempty. Say A is nonempty ∣ A ∣>0 ∧ ∣ B ∣≥0 ⇒∣ A ∣+∣ B ∣>0 ∣ A ∪B ∣=∣ A ∣+∣ B ∣>0 [A and B are disjoint sets.]....I ∣ A∩B ∣=0.............................................................II ∣ A∪B ∣>∣ A∩B ∣ [From I and II]∣ In this subcase ∣ A∪B∣ ≰ ∣ A∩B ∣ Not concerned the result to prove. SubCase (b)When A=∅ and B=∅ , ∣ A ∣=0 and ∣B ∣=0. ∣ A∪B ∣=∣ A ∣+∣ B ∣=0+0=0 .............................I ∣ A∩B ∣=0........................................................II ∣ A∪B ∣= ∣ A∩B ∣⇒A=B=∅ [From I and II] ∣ A∪B ∣=∣A∪B ∣⇒ A=B Proved the result in this subcase. Case−2 When A∩B≠∅ i−e A and B are overlapping sets. SubCase (a) A B ∧ B A means A∩B ⊆ A ∧ A∩B ⊆B ∣ A∪B ∣=∣A∣+∣B∣−∣ A∩B ∣ A∩B ⊂ A⇒∣A∩B ∣< ∣A∣ , A∩B ⊂ B⇒∣A∩B∣ < ∣B∣ ⇒ 2∣A∩B∣<∣A∣+∣B∣ ⇒ ∣A∩B∣ <∣A∣+∣B∣−∣A∩B∣ ⇒∣A∩B∣<∣A∪B∣ ⇒∣A∪B∣>∣A∩B∣ Not concerned with the result to prove. SubCase (b) One of A and B is subset of other Say A⊆B ⇒ ∣A∣≤∣B∣ A∪B =B⇒∣A∪B∣=∣B∣ A∩B =A⇒∣A∩B∣=∣A∣ ∣A∣≤∣B∣⇒ ∣A∩B∣≤∣A∪B∣⇒∣A∪B∣≥∣A∩B∣ ⇒∣A∪B∣>∣A∩B∣_(Not concerned) ∨ ∣A∪B∣=∣A∩B∣ SubCase (c) A⊆B ∧ B⊆A i−e A=B Continue](https://www.tinkutara.com/question/Q1686.png)
Answered by Rasheed Soomro last updated on 01/Sep/15
![∣A∪B∣≤∣A∩B∣ ⇒ A=B ⇒ ∣A∪B∣<∣A∩B∣ ⇒ A=B_(−) ∨ ∣A∪B∣=∣A∩B∣ ⇒ A=B_(−) First we will prove that[ ∣A∪B∣<∣A∩B∣ ⇒ A=B_(−) ] is false for any A and B. Then we will prove : ∣A∪B∣=∣A∩B∣ ⇒ A=B_(−) { ((A∩B ⊆ A)),((A∩B ⊆ B)) :}⇒ { ((∣A∩B ∣≤ ∣A∣)),((∣A∩B ∣≤ ∣B∣)) :}⇒2∣A∩B∣≤∣A∣+∣B∣ ⇒∣A∩B∣ ≤ ∣A∣+∣B∣−∣A∩B∣ ⇒∣A∩B∣≤ ∣A∪B∣ [ ∵ ∣A∪B∣=∣A∣+∣B∣−∣A∩B∣ ] ⇒∣A∪B∣ ≥ ∣A∩B∣ ⇒∣A∪B∣≮ ∣A∩B∣ Proof for ∣A∪B∣=∣A∩B∣ ⇒ A=B On the contrary suppose A≠B Then there must be a member x which belongs to one of A and B and doesn′t belong to other. Say x ∈ A ∧ x ∉ B ⇒ x ∈ A∪B but x ∉ A∩B ⇒ ∣A∪B∣≠∣A∩B∣ Which contradicts the given [ ∣A∪B∣=∣A∩B∣ ] Hence A=B (proved) ∣A∪B∣=∣A∩B∣ ⇒ A=B (More specific) Or we can say also, ∣A∪B∣≤∣A∩B∣ ⇒ A=B (Not specific)](https://www.tinkutara.com/question/Q1693.png)
Commented by 112358 last updated on 01/Sep/15

Commented by 112358 last updated on 01/Sep/15

Commented by Rasheed Soomro last updated on 01/Sep/15

Commented by 123456 last updated on 01/Sep/15

Commented by 112358 last updated on 01/Sep/15

Commented by Rasheed Soomro last updated on 01/Sep/15
