Menu Close

lets-a-and-b-be-two-sequence-such-that-A-lim-n-a-n-B-lim-n-b-n-exist-and-are-finite-lets-c-be-a-new-sequence-c-n-p-n-a-n-q-n-b-n-p-q-N-0-1-p-n-q-n-1-d-N-d-N-d-d-




Question Number 4507 by 123456 last updated on 03/Feb/16
lets a and b be two sequence such that  A=lim_(n→+∞) a_n   B=lim_(n→+∞) b_n   exist and are finite, lets  c be a new sequence  c_n =p(n)a_(σ(n)) +q(n)b_(μ(n))   p,q:N→{0,1}  p(n)+q(n)=1  d_σ ⊂N,d_μ ⊂N,d_σ ∪d_μ =N,d_σ ∩d_μ =∅  ρ:d_σ →N is one to one  τ:d_μ →N is one to one  σ(n)= { ((ρ(n)    n∈d_σ )),((1           n∉d_σ )) :}  μ(n)= { ((τ(n)     n∈d_μ )),((1            n∉d_μ )) :}  proof or give a counter example that  if  A=B  them  lim_(n→+∞) c_n  exists
letsaandbbetwosequencesuchthatA=limn+anB=limn+bnexistandarefinite,letscbeanewsequencecn=p(n)aσ(n)+q(n)bμ(n)p,q:N{0,1}p(n)+q(n)=1dσN,dμN,dσdμ=N,dσdμ=ρ:dσNisonetooneτ:dμNisonetooneσ(n)={ρ(n)ndσ1ndσμ(n)={τ(n)ndμ1ndμprooforgiveacounterexamplethatifA=Bthemlimn+cnexists
Commented by Yozzii last updated on 05/Feb/16
Let l=lim_(n→+∞) c_n =lim_(n→+∞) (p(n)a_(σ(n)) +q(n)b_(μ(n)) )  Since p(n)+q(n)=1 ∀n∈N,⇒p(n)=1−q(n).  ∴ l=lim_(n→+∞) (a_(σ(n)) +q(n)(b_(μ(n)) −a_(σ(n)) ))  l=lim_(n→+∞) a_(σ(n)) +(lim_(n→+∞) q(n)){lim_(n→+∞) (b_(μ(n)) −a_(σ(n)) )}  As n→+∞, the values of μ(n) and σ(n)  are both indeterminate since n∈d_μ  or  n∈d_σ  as n→+∞. So, σ(n)=ρ(n) or  σ(n)=1 as n→+∞. Similarly, μ(n)=τ(n)  or μ(n)=1 as n→+∞. q(n) is also   indeterminate in value as n→+∞   since q(n)=0 or q(n)=1, depending  on n.
Letl=limn+cn=limn+(p(n)aσ(n)+q(n)bμ(n))Sincep(n)+q(n)=1nN,p(n)=1q(n).l=limn+(aσ(n)+q(n)(bμ(n)aσ(n)))l=limn+aσ(n)+(limn+q(n)){limn+(bμ(n)aσ(n))}Asn+,thevaluesofμ(n)andσ(n)arebothindeterminatesincendμorndσasn+.So,σ(n)=ρ(n)orσ(n)=1asn+.Similarly,μ(n)=τ(n)orμ(n)=1asn+.q(n)isalsoindeterminateinvalueasn+sinceq(n)=0orq(n)=1,dependingonn.

Leave a Reply

Your email address will not be published. Required fields are marked *