Menu Close

lets-f-0-1-R-given-by-f-x-x-x-Q-1-x-x-Q-is-f-continuos-at-x-1-2-is-0-1-fdx-riemann-integrable-is-0-1-fdx-lebesgue-integable-




Question Number 1124 by 123456 last updated on 17/Jun/15
lets f:[0,1]→R given by  f(x)= { (x,(x∈Q)),((1−x),(x∉Q)) :}  is f continuos at x=1/2?  is ∫_0 ^1 fdx riemann integrable?  is ∫_0 ^1 fdx lebesgue integable?
$$\mathrm{lets}\:{f}:\left[\mathrm{0},\mathrm{1}\right]\rightarrow\mathbb{R}\:\mathrm{given}\:\mathrm{by} \\ $$$${f}\left({x}\right)=\begin{cases}{{x}}&{{x}\in\mathbb{Q}}\\{\mathrm{1}−{x}}&{{x}\notin\mathbb{Q}}\end{cases} \\ $$$$\mathrm{is}\:{f}\:\mathrm{continuos}\:\mathrm{at}\:{x}=\mathrm{1}/\mathrm{2}? \\ $$$$\mathrm{is}\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{fdx}\:\mathrm{riemann}\:\mathrm{integrable}? \\ $$$$\mathrm{is}\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{fdx}\:\mathrm{lebesgue}\:\mathrm{integable}? \\ $$
Commented by prakash jain last updated on 20/Jun/15
Continuity  f((1/2))=(1/2)  LHL, x=(1/2)−ε  ∣1−(1/2)+ε−(1/2)∣<δ⇒ε<δ  ∣(1/2)−ε−(1/2)∣<δ⇒ε<δ  RHL,x=(1/2)+ε  ∣1−(1/2)−ε−(1/2)∣<δ⇒ε<δ  ∣(1/2)+ε−(1/2)∣<δ⇒ε<δ  f(x) is continuous at x=(1/2)
$$\mathrm{Continuity} \\ $$$${f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{LHL},\:{x}=\frac{\mathrm{1}}{\mathrm{2}}−\epsilon \\ $$$$\mid\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}+\epsilon−\frac{\mathrm{1}}{\mathrm{2}}\mid<\delta\Rightarrow\epsilon<\delta \\ $$$$\mid\frac{\mathrm{1}}{\mathrm{2}}−\epsilon−\frac{\mathrm{1}}{\mathrm{2}}\mid<\delta\Rightarrow\epsilon<\delta \\ $$$$\mathrm{RHL},{x}=\frac{\mathrm{1}}{\mathrm{2}}+\epsilon \\ $$$$\mid\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}−\epsilon−\frac{\mathrm{1}}{\mathrm{2}}\mid<\delta\Rightarrow\epsilon<\delta \\ $$$$\mid\frac{\mathrm{1}}{\mathrm{2}}+\epsilon−\frac{\mathrm{1}}{\mathrm{2}}\mid<\delta\Rightarrow\epsilon<\delta \\ $$$${f}\left({x}\right)\:\mathrm{is}\:\mathrm{continuous}\:\mathrm{at}\:{x}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *