Menu Close

lets-f-continuous-and-diferrenciable-f-x-1-xf-x-proof-that-n-N-0-f-n-x-1-nf-n-1-x-xf-n-x-where-f-n-x-d-n-f-dx-n-




Question Number 4100 by 123456 last updated on 28/Dec/15
lets f continuous and diferrenciable  f(x+1)=xf(x)  proof that n∈N/{0}  f^((n)) (x+1)=nf^((n−1)) (x)+xf^((n)) (x)  where  f^((n)) (x)=(d^n f/dx^n )
letsfcontinuousanddiferrenciablef(x+1)=xf(x)proofthatnN/{0}f(n)(x+1)=nf(n1)(x)+xf(n)(x)wheref(n)(x)=dnfdxn
Answered by prakash jain last updated on 28/Dec/15
f^((n)) (x+1)=nf^((n−1)) (x)+xf^((n)) (x)    ...(Stmt A)  f(x+1)=xf(x)  f ′(x+1)=xf ′(x)+f(x)  Stmt A is true for n=1  Let us say A is true for n=k  f^((k)) (x)=kf^((k−1)) (x)+xf^((k)) (x)  f^((k+1)) (x)=kf^((k)) (x)+f^((k)) (x)+xf^((k+1)) (x)                     =(k+1)f^((k)) (x)+x f^((k+1)) (x)  Hence if A is true for k⇒A is true for k+1  Since A is true for k=1.  f^((n)) (x+1)=nf^((n−1)) (x)+xf^((n)) (x)      is true for all n∈N, n≥1
f(n)(x+1)=nf(n1)(x)+xf(n)(x)(StmtA)f(x+1)=xf(x)f(x+1)=xf(x)+f(x)StmtAistrueforn=1LetussayAistrueforn=kf(k)(x)=kf(k1)(x)+xf(k)(x)f(k+1)(x)=kf(k)(x)+f(k)(x)+xf(k+1)(x)=(k+1)f(k)(x)+xf(k+1)(x)HenceifAistrueforkAistruefork+1SinceAistruefork=1.f(n)(x+1)=nf(n1)(x)+xf(n)(x)istrueforallnN,n1

Leave a Reply

Your email address will not be published. Required fields are marked *