Menu Close

lets-f-continuous-and-diferrenciable-f-x-1-xf-x-proof-that-n-N-0-f-n-x-1-nf-n-1-x-xf-n-x-where-f-n-x-d-n-f-dx-n-




Question Number 4100 by 123456 last updated on 28/Dec/15
lets f continuous and diferrenciable  f(x+1)=xf(x)  proof that n∈N/{0}  f^((n)) (x+1)=nf^((n−1)) (x)+xf^((n)) (x)  where  f^((n)) (x)=(d^n f/dx^n )
$$\mathrm{lets}\:{f}\:\mathrm{continuous}\:\mathrm{and}\:\mathrm{diferrenciable} \\ $$$${f}\left({x}+\mathrm{1}\right)={xf}\left({x}\right) \\ $$$$\mathrm{proof}\:\mathrm{that}\:{n}\in\mathbb{N}/\left\{\mathrm{0}\right\} \\ $$$${f}^{\left({n}\right)} \left({x}+\mathrm{1}\right)={nf}^{\left({n}−\mathrm{1}\right)} \left({x}\right)+{xf}^{\left({n}\right)} \left({x}\right) \\ $$$$\mathrm{where} \\ $$$${f}^{\left({n}\right)} \left({x}\right)=\frac{{d}^{{n}} {f}}{{dx}^{{n}} } \\ $$
Answered by prakash jain last updated on 28/Dec/15
f^((n)) (x+1)=nf^((n−1)) (x)+xf^((n)) (x)    ...(Stmt A)  f(x+1)=xf(x)  f ′(x+1)=xf ′(x)+f(x)  Stmt A is true for n=1  Let us say A is true for n=k  f^((k)) (x)=kf^((k−1)) (x)+xf^((k)) (x)  f^((k+1)) (x)=kf^((k)) (x)+f^((k)) (x)+xf^((k+1)) (x)                     =(k+1)f^((k)) (x)+x f^((k+1)) (x)  Hence if A is true for k⇒A is true for k+1  Since A is true for k=1.  f^((n)) (x+1)=nf^((n−1)) (x)+xf^((n)) (x)      is true for all n∈N, n≥1
$${f}^{\left({n}\right)} \left({x}+\mathrm{1}\right)={nf}^{\left({n}−\mathrm{1}\right)} \left({x}\right)+{xf}^{\left({n}\right)} \left({x}\right)\:\:\:\:…\left(\mathrm{Stmt}\:{A}\right) \\ $$$${f}\left({x}+\mathrm{1}\right)={xf}\left({x}\right) \\ $$$${f}\:'\left({x}+\mathrm{1}\right)={xf}\:'\left({x}\right)+{f}\left({x}\right) \\ $$$$\mathrm{Stmt}\:\mathrm{A}\:\mathrm{is}\:\mathrm{true}\:\mathrm{for}\:{n}=\mathrm{1} \\ $$$$\mathrm{Let}\:\mathrm{us}\:\mathrm{say}\:\mathrm{A}\:\mathrm{is}\:\mathrm{true}\:\mathrm{for}\:{n}={k} \\ $$$${f}^{\left({k}\right)} \left({x}\right)={kf}^{\left({k}−\mathrm{1}\right)} \left({x}\right)+{xf}^{\left({k}\right)} \left({x}\right) \\ $$$${f}^{\left({k}+\mathrm{1}\right)} \left({x}\right)={kf}\:^{\left({k}\right)} \left({x}\right)+{f}^{\left({k}\right)} \left({x}\right)+{xf}^{\left({k}+\mathrm{1}\right)} \left({x}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left({k}+\mathrm{1}\right){f}^{\left({k}\right)} \left({x}\right)+{x}\:{f}^{\left({k}+\mathrm{1}\right)} \left({x}\right) \\ $$$$\mathrm{Hence}\:\mathrm{if}\:\mathrm{A}\:\mathrm{is}\:\mathrm{true}\:\mathrm{for}\:{k}\Rightarrow\mathrm{A}\:\mathrm{is}\:\mathrm{true}\:\mathrm{for}\:{k}+\mathrm{1} \\ $$$$\mathrm{Since}\:\mathrm{A}\:\mathrm{is}\:\mathrm{true}\:\mathrm{for}\:{k}=\mathrm{1}. \\ $$$${f}^{\left({n}\right)} \left({x}+\mathrm{1}\right)={nf}^{\left({n}−\mathrm{1}\right)} \left({x}\right)+{xf}^{\left({n}\right)} \left({x}\right)\:\:\:\: \\ $$$$\mathrm{is}\:\mathrm{true}\:\mathrm{for}\:\mathrm{all}\:{n}\in\mathbb{N},\:{n}\geqslant\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *