lets-f-continuous-and-diferrenciable-f-x-1-xf-x-proof-that-n-N-0-f-n-x-1-nf-n-1-x-xf-n-x-where-f-n-x-d-n-f-dx-n- Tinku Tara June 3, 2023 Others 0 Comments FacebookTweetPin Question Number 4100 by 123456 last updated on 28/Dec/15 letsfcontinuousanddiferrenciablef(x+1)=xf(x)proofthatn∈N/{0}f(n)(x+1)=nf(n−1)(x)+xf(n)(x)wheref(n)(x)=dnfdxn Answered by prakash jain last updated on 28/Dec/15 f(n)(x+1)=nf(n−1)(x)+xf(n)(x)…(StmtA)f(x+1)=xf(x)f′(x+1)=xf′(x)+f(x)StmtAistrueforn=1LetussayAistrueforn=kf(k)(x)=kf(k−1)(x)+xf(k)(x)f(k+1)(x)=kf(k)(x)+f(k)(x)+xf(k+1)(x)=(k+1)f(k)(x)+xf(k+1)(x)HenceifAistruefork⇒Aistruefork+1SinceAistruefork=1.f(n)(x+1)=nf(n−1)(x)+xf(n)(x)istrueforalln∈N,n⩾1 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: What-is-the-remainder-when-x-81-x-49-x-25-x-9-x-is-divided-by-x-3-x-Next Next post: Z-0-pi-2-arctan-sin-x-dx-0-pi-4-arcsin-tan-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.