Menu Close

Lets-say-y-f-x-x-R-y-R-if-a-constent-Does-there-exist-f-a-a-for-any-function-y-f-x-Please-prove-disprove-




Question Number 4946 by FilupSmith last updated on 25/Mar/16
Lets say y=f(x):∀x∈R,y∈R    if a=constent  Does there exist f(a)=a  for any function y=f(x)?  Please prove/disprove
$$\mathrm{Lets}\:\mathrm{say}\:{y}={f}\left({x}\right):\forall{x}\in\mathbb{R},{y}\in\mathbb{R} \\ $$$$ \\ $$$$\mathrm{if}\:{a}=\mathrm{constent} \\ $$$$\mathrm{Does}\:\mathrm{there}\:\mathrm{exist}\:{f}\left({a}\right)={a} \\ $$$$\mathrm{for}\:\mathrm{any}\:\mathrm{function}\:{y}={f}\left({x}\right)? \\ $$$$\mathrm{Please}\:\mathrm{prove}/\mathrm{disprove} \\ $$
Commented by prakash jain last updated on 25/Mar/16
f(x)=x⇒f(a)=a
$${f}\left({x}\right)={x}\Rightarrow{f}\left({a}\right)={a} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *