Menu Close

lets-two-polynimies-p-n-q-n-givwn-by-p-1-q-1-x-p-n-1-p-n-q-n-q-n-1-p-n-q-n-then-1-1-1-2-2-3-lets-W-u-v-determinant-u-v-u-v-is-true-that-W-p-n-q-n-0-n-gt-1-




Question Number 1844 by 123456 last updated on 12/Oct/15
lets two polynimies p_n ,q_n  givwn by  p_1 =q_1 =x  p_(n+1) =p_n +q_n   q_(n+1) =p_n q_n   then (1,1)→(1,2)→(2,3)  lets W(u,v)= determinant ((u,v),((u′),(v′)))  is true that  W(p_n ,q_n )≠0,∀n>1
$$\mathrm{lets}\:\mathrm{two}\:\mathrm{polynimies}\:{p}_{{n}} ,{q}_{{n}} \:\mathrm{givwn}\:\mathrm{by} \\ $$$${p}_{\mathrm{1}} ={q}_{\mathrm{1}} ={x} \\ $$$${p}_{{n}+\mathrm{1}} ={p}_{{n}} +{q}_{{n}} \\ $$$${q}_{{n}+\mathrm{1}} ={p}_{{n}} {q}_{{n}} \\ $$$$\mathrm{then}\:\left(\mathrm{1},\mathrm{1}\right)\rightarrow\left(\mathrm{1},\mathrm{2}\right)\rightarrow\left(\mathrm{2},\mathrm{3}\right) \\ $$$$\mathrm{lets}\:\mathrm{W}\left({u},{v}\right)=\begin{vmatrix}{{u}}&{{v}}\\{{u}'}&{{v}'}\end{vmatrix} \\ $$$$\mathrm{is}\:\mathrm{true}\:\mathrm{that} \\ $$$$\mathrm{W}\left({p}_{{n}} ,{q}_{{n}} \right)\neq\mathrm{0},\forall{n}>\mathrm{1} \\ $$
Commented by Rasheed Soomro last updated on 12/Oct/15
What is meant by polinimes ?
$${What}\:{is}\:{meant}\:{by}\:\mathrm{polinimes}\:? \\ $$
Commented by 123456 last updated on 12/Oct/15
typo
$$\mathrm{typo} \\ $$
Commented by 112358 last updated on 17/Oct/15
What does the notation u′ stand  for if given any u?
$${What}\:{does}\:{the}\:{notation}\:{u}'\:{stand} \\ $$$${for}\:{if}\:{given}\:{any}\:{u}?\: \\ $$
Commented by 123456 last updated on 17/Oct/15
u′=(du/dt)=u_t =(∂u/∂t)  derivate
$${u}'=\frac{{du}}{{dt}}={u}_{{t}} =\frac{\partial{u}}{\partial{t}} \\ $$$$\mathrm{derivate} \\ $$
Commented by 112358 last updated on 18/Oct/15
Thanks for explanation.
$${Thanks}\:{for}\:{explanation}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *