Menu Close

lets-two-sets-A-B-and-take-X-the-number-of-elements-of-the-set-X-them-proof-or-give-a-counter-example-that-if-A-B-and-A-B-then-A-and-B-




Question Number 1616 by 123456 last updated on 27/Aug/15
lets two sets A,B and take ∣X∣ the number  of elements of the set X, them  proof or give a counter example that  if ∣A∪B∣=∞ and ∣A∩B∣=∞ then ∣A∣=∞ and ∣B∣=∞
letstwosetsA,BandtakeXthenumberofelementsofthesetX,themprooforgiveacounterexamplethatifAB∣=andAB∣=thenA∣=andB∣=
Commented by 112358 last updated on 27/Aug/15
A∪B=A+B−A∩B  ⇒∣A∪B∣=∣A∣+∣B∣−∣A∩B∣  ∴ ∣A∩B∣+∣A∪B∣=∣A∣+∣B∣  By logic, p→q≡∽q→∽p. So,  propose the following statements  p:∣A∩B∣ and ∣A∪B∣ are non−finite.  q: ∣A∣ and ∣B∣ are non−finite.  Then one may find it easier to   show that ∽q→∽p rather than  p→q directly.  Let ∣A∣ and ∣B∣ be finite.  ⇒      ∣A∣=n     ,    ∣B∣=m  where n,m∈Z^+  and n,m are finite.  ⇒∣A∪B∣+∣A∩B∣=m+n  ∵ n and m arefinite   ⇒m+n is finite  ⇒∣A∩B∣+∣A∪B∣ is finite  ∴ ∣A∩B∣=x,∣A∪B∣=y so that                      x+y=m+n  with x,y∈Z^+  and are finite. Thus,  ∣A∪B∣ and ∣A∩B∣ are finite.  ∵ ∽q→∽p then we have that  p→q. Hence, ∣A∩B∣=∞ and ∣A∪B∣=∞  implies that ∣A∣=∞ and ∣B∣=∞.
AB=A+BAB⇒∣AB∣=∣A+BABAB+AB∣=∣A+BBylogic,pq≡∽q→∽p.So,proposethefollowingstatementsp:∣ABandABarenonfinite.q:AandBarenonfinite.Thenonemayfinditeasiertoshowthatq→∽pratherthanpqdirectly.LetAandBbefinite.A∣=n,B∣=mwheren,mZ+andn,marefinite.⇒∣AB+AB∣=m+nnandmarefinitem+nisfinite⇒∣AB+ABisfiniteAB∣=x,AB∣=ysothatx+y=m+nwithx,yZ+andarefinite.Thus,ABandABarefinite.q→∽pthenwehavethatpq.Hence,AB∣=andAB∣=impliesthatA∣=andB∣=.
Commented by 123456 last updated on 28/Aug/15
nice :D  thanks
nice:Dthanks
Commented by Rasheed Ahmad last updated on 28/Aug/15
Appreciations! Good approach!
Appreciations!Goodapproach!

Leave a Reply

Your email address will not be published. Required fields are marked *