Menu Close

letsw-f-x-y-f-x-f-y-f-1-1-f-x-f-1-x-1-x-0-proof-that-f-x-x-x-R-




Question Number 1251 by 123456 last updated on 18/Jul/15
letsw  f(x+y)=f(x)+f(y)  f(1)=1  f(x)f((1/x))=1,x≠0  proof that f(x)=x∀x∈R
letswf(x+y)=f(x)+f(y)f(1)=1f(x)f(1x)=1,x0proofthatf(x)=xxR
Commented by prakash jain last updated on 18/Jul/15
Cauchy′s Equation  f(x+y)=f(x)+f(y)⇒f(x)=ax  Given  f(x)f((1/x))=1⇒ax∙(a/x)=1⇒a=±1  f(x)=x or f(x)=−x  A condtion f(1)=1 is required to prove  f(x)=x
CauchysEquationf(x+y)=f(x)+f(y)f(x)=axGivenf(x)f(1x)=1axax=1a=±1f(x)=xorf(x)=xAcondtionf(1)=1isrequiredtoprovef(x)=x

Leave a Reply

Your email address will not be published. Required fields are marked *