Menu Close

lim-n-1-n-1-n-




Question Number 74570 by Learner-123 last updated on 26/Nov/19
lim_(n→∞) (1/((n)^(1/n) )) = ?
$${lim}_{{n}\rightarrow\infty} \frac{\mathrm{1}}{\left({n}\right)^{\frac{\mathrm{1}}{{n}}} }\:=\:? \\ $$
Answered by mind is power last updated on 26/Nov/19
lim_(n→∞) n^(−(1/n)) =lim_(n→∞) e^(−((ln(n))/n)) =e^0 =1
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}n}^{−\frac{\mathrm{1}}{\mathrm{n}}} =\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}e}^{−\frac{\mathrm{ln}\left(\mathrm{n}\right)}{\mathrm{n}}} =\mathrm{e}^{\mathrm{0}} =\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *