Menu Close

lim-n-2-cosn-4n-sinn-




Question Number 69482 by Henri Boucatchou last updated on 24/Sep/19
lim_(n→∞) ((2+cosn)/(4n+sinn)) = ?
$$\underset{{n}\rightarrow\infty} {{lim}}\frac{\mathrm{2}+{cosn}}{\mathrm{4}{n}+{sinn}}\:=\:? \\ $$
Commented by Tony Lin last updated on 24/Sep/19
−1≤cosn≤1  1≤2+cosn≤3  −1≤sinn≤1  −1+4n≤4n+sinn≤1+4n  (1/(−1+4n))≤((2+cosn)/(4n+sinn))≤(3/(1+4n))  ∵lim_(n→∞) (1/(−1+4n))=lim_(n→∞) (3/(1+4n))=0  ∴By Squeeze Theorem  ⇒lim_(n→∞) ((2+cosn)/(4n+sinn))=0
$$−\mathrm{1}\leqslant{cosn}\leqslant\mathrm{1} \\ $$$$\mathrm{1}\leqslant\mathrm{2}+{cosn}\leqslant\mathrm{3} \\ $$$$−\mathrm{1}\leqslant{sinn}\leqslant\mathrm{1} \\ $$$$−\mathrm{1}+\mathrm{4}{n}\leqslant\mathrm{4}{n}+{sinn}\leqslant\mathrm{1}+\mathrm{4}{n} \\ $$$$\frac{\mathrm{1}}{−\mathrm{1}+\mathrm{4}{n}}\leqslant\frac{\mathrm{2}+{cosn}}{\mathrm{4}{n}+{sinn}}\leqslant\frac{\mathrm{3}}{\mathrm{1}+\mathrm{4}{n}} \\ $$$$\because\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{−\mathrm{1}+\mathrm{4}{n}}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{3}}{\mathrm{1}+\mathrm{4}{n}}=\mathrm{0} \\ $$$$\therefore{By}\:{Squeeze}\:{Theorem} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{2}+{cosn}}{\mathrm{4}{n}+{sinn}}=\mathrm{0} \\ $$
Answered by $@ty@m123 last updated on 24/Sep/19
Let n=(1/x) so that as n→^� ∞, x→0  The given limit  lim_(x→0)     ((2+cos(1/x))/((4/x)+sin(1/x)))   lim_(x→0)     ((2x+xcos(1/x))/(4+xsin(1/x)))   lim_(x→0)     ((2x+x×(a no.  between −1 and1))/(4+x×(a no.  between −1 and1)))   =((2×0+0)/(4+0))  =0
$${Let}\:{n}=\frac{\mathrm{1}}{{x}}\:{so}\:{that}\:{as}\:{n}\bar {\rightarrow}\infty,\:{x}\rightarrow\mathrm{0} \\ $$$${The}\:{given}\:{limit} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\:\:\frac{\mathrm{2}+{cos}\frac{\mathrm{1}}{{x}}}{\frac{\mathrm{4}}{{x}}+{sin}\frac{\mathrm{1}}{{x}}}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\:\:\frac{\mathrm{2}{x}+{xcos}\frac{\mathrm{1}}{{x}}}{\mathrm{4}+{xsin}\frac{\mathrm{1}}{{x}}}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\:\:\frac{\mathrm{2}{x}+{x}×\left({a}\:{no}.\:\:{between}\:−\mathrm{1}\:{and}\mathrm{1}\right)}{\mathrm{4}+{x}×\left({a}\:{no}.\:\:{between}\:−\mathrm{1}\:{and}\mathrm{1}\right)}\: \\ $$$$=\frac{\mathrm{2}×\mathrm{0}+\mathrm{0}}{\mathrm{4}+\mathrm{0}} \\ $$$$=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *