Menu Close

lim-n-2n-2-5n-3-n-5-1-




Question Number 75468 by aliesam last updated on 11/Dec/19
lim_(n→∞) (√((2n^2 −5n+3)/(n^5 +1)))
$$\underset{{n}\rightarrow\infty} {{lim}}\sqrt{\frac{\mathrm{2}{n}^{\mathrm{2}} −\mathrm{5}{n}+\mathrm{3}}{{n}^{\mathrm{5}} +\mathrm{1}}} \\ $$
Commented by MJS last updated on 11/Dec/19
P_n (x)=c_n x^n +c_(n−1) x^(n−1) ...+c_1 x+c_0 =Σ_(i=0) ^n c_i x^i   lim_(x→∞) ((P_n (x))/(P_(n+k) (x)))=0 ∀ n, k ∈N^★   ⇒  lim_(n→∞) (√((2n^2 −5n+3)/(n^5 +1)))=0
$${P}_{{n}} \left({x}\right)={c}_{{n}} {x}^{{n}} +{c}_{{n}−\mathrm{1}} {x}^{{n}−\mathrm{1}} …+{c}_{\mathrm{1}} {x}+{c}_{\mathrm{0}} =\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}{c}_{{i}} {x}^{{i}} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{P}_{{n}} \left({x}\right)}{{P}_{{n}+{k}} \left({x}\right)}=\mathrm{0}\:\forall\:{n},\:{k}\:\in\mathbb{N}^{\bigstar} \\ $$$$\Rightarrow \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\sqrt{\frac{\mathrm{2}{n}^{\mathrm{2}} −\mathrm{5}{n}+\mathrm{3}}{{n}^{\mathrm{5}} +\mathrm{1}}}=\mathrm{0} \\ $$
Commented by mathmax by abdo last updated on 12/Dec/19
we have lim_(n→+∞)  ((2n^2 −5n+3)/(n^5  +1)) =lim_(n→+∞)  ((2n^2 )/n^5 ) =lim_(n→+∞) (2/n^3 )=0 ⇒  lim_(n→+∞) (√((2n^2 −5n+3)/(n^5  +1))) =0
$${we}\:{have}\:{lim}_{{n}\rightarrow+\infty} \:\frac{\mathrm{2}{n}^{\mathrm{2}} −\mathrm{5}{n}+\mathrm{3}}{{n}^{\mathrm{5}} \:+\mathrm{1}}\:={lim}_{{n}\rightarrow+\infty} \:\frac{\mathrm{2}{n}^{\mathrm{2}} }{{n}^{\mathrm{5}} }\:={lim}_{{n}\rightarrow+\infty} \frac{\mathrm{2}}{{n}^{\mathrm{3}} }=\mathrm{0}\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} \sqrt{\frac{\mathrm{2}{n}^{\mathrm{2}} −\mathrm{5}{n}+\mathrm{3}}{{n}^{\mathrm{5}} \:+\mathrm{1}}}\:=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *