Menu Close

lim-n-2n-2-5n-3-n-5-1-




Question Number 75468 by aliesam last updated on 11/Dec/19
lim_(n→∞) (√((2n^2 −5n+3)/(n^5 +1)))
limn2n25n+3n5+1
Commented by MJS last updated on 11/Dec/19
P_n (x)=c_n x^n +c_(n−1) x^(n−1) ...+c_1 x+c_0 =Σ_(i=0) ^n c_i x^i   lim_(x→∞) ((P_n (x))/(P_(n+k) (x)))=0 ∀ n, k ∈N^★   ⇒  lim_(n→∞) (√((2n^2 −5n+3)/(n^5 +1)))=0
Pn(x)=cnxn+cn1xn1+c1x+c0=ni=0cixilimxPn(x)Pn+k(x)=0n,kNlimn2n25n+3n5+1=0
Commented by mathmax by abdo last updated on 12/Dec/19
we have lim_(n→+∞)  ((2n^2 −5n+3)/(n^5  +1)) =lim_(n→+∞)  ((2n^2 )/n^5 ) =lim_(n→+∞) (2/n^3 )=0 ⇒  lim_(n→+∞) (√((2n^2 −5n+3)/(n^5  +1))) =0
wehavelimn+2n25n+3n5+1=limn+2n2n5=limn+2n3=0limn+2n25n+3n5+1=0

Leave a Reply

Your email address will not be published. Required fields are marked *