Menu Close

lim-n-f-a-1-n-f-a-1-n-n-




Question Number 370 by 123456 last updated on 25/Jan/15
lim_(n→∞) [((f(a+(1/n)))/(f(a−(1/n))))]^n
limn[f(a+1n)f(a1n)]n
Answered by prakash jain last updated on 24/Dec/14
lim_(n→∞) ln y=lim_(n→∞) ((ln f(a+(1/n))−ln f(a−(1/n)))/(1/n))  =lim_(n→∞) ((((f ′(a+(1/n)))/(f(a+(1/n))))∙(−(1/n^2 ))−((f ′(a−(1/n)))/(f(a−(1/n))))∙(+(1/n^2 )))/(−(1/n^2 )))  =lim_(n→∞) (((−(1/n^2 ))[((f ′(a+(1/n)))/(f(a+(1/n))))∙+((f ′(a−(1/n)))/(f(a−(1/n))))])/(−(1/n^2 )))  =((2f ′(a))/(f(a)))  lim_(n→∞) y=exp(((2f ′(a))/(f(a))))
limlnny=limnlnf(a+1n)lnf(a1n)1/n=limnf(a+1n)f(a+1n)(1n2)f(a1n)f(a1n)(+1n2)1n2=limn(1n2)[f(a+1n)f(a+1n)+f(a1n)f(a1n)]1n2=2f(a)f(a)limny=exp(2f(a)f(a))