Menu Close

lim-n-f-a-1-n-f-a-n-




Question Number 364 by novrya last updated on 25/Jan/15
lim_(n→∞) [((f(a+1/n))/(f(a)))]^n =....
limn[f(a+1/n)f(a)]n=.
Answered by prakash jain last updated on 24/Dec/14
y=[((f(a+1/x))/(f(a)))]^x   ln y=x[lnf(a+(1/x))−ln f(a)]  lim_(x→∞) ln y=lim_(x→∞) (([lnf(a+(1/x))−ln f(a)])/(1/x))  Right side limit is of form 0/0. Assuming ln f(a).  lim_(x→∞) ln y=lim_(x→∞) ((((f ′(a+(1/x)))/(f(a+(1/x))))(−(1/x^2 )))/(−(1/x^2 )))  ln lim_(x→∞)  y=((f ′(a))/(f(a)))  lim_(x→∞)  y=e^((f ′(a))/(f(a)))   Note: Some assumptions are made about f(x)  to apply L′Hospital rule.
y=[f(a+1/x)f(a)]xlny=x[lnf(a+1x)lnf(a)]limlnxy=limx[lnf(a+1x)lnf(a)]1/xRightsidelimitisofform0/0.Assuminglnf(a).limlnxy=limxf(a+1x)f(a+1x)(1x2)1x2lnlimxy=f(a)f(a)limxy=ef(a)f(a)Note:Someassumptionsaremadeaboutf(x)toapplyLHospitalrule.
Answered by 123456 last updated on 24/Dec/14
=lim_(n→∞) [((f(a+(1/n)))/(f(a)))]^n →1^∞   =lim_(n→∞)  exp ln [((f(a+(1/n)))/(f(a)))]^n   =exp[lim_(n→∞)  n ln((f(a+(1/n)))/(f(a)))]→∞∙0  =exp[lim_(n→∞)  ((ln ((f(a+(1/n)))/(f(a))))/(1/n))]→(0/0)  =exp[lim_(n→∞)  ((−(1/n^2 )∙((f′(a+(1/n)))/(f(a)))∙((f(a))/(f(a+(1/n)))))/(−(1/n^2 )))]  =exp[lim_(n→∞)  ((f′(a+(1/n)))/(f(a+(1/n))))]  =exp[((f′(a))/(f(a)))]  assuming f(x) is continuos and diferentiable at x=a
=limn[f(a+1n)f(a)]n1=limnexpln[f(a+1n)f(a)]n=exp[limnnlnf(a+1n)f(a)]0=exp[limnlnf(a+1n)f(a)1n]00=exp[limn1n2f(a+1n)f(a)f(a)f(a+1n)1n2]=exp[limnf(a+1n)f(a+1n)]=exp[f(a)f(a)]assumingf(x)iscontinuosanddiferentiableatx=a