lim-n-f-a-1-n-f-a-n- Tinku Tara June 3, 2023 Geometry FacebookTweetPin Question Number 364 by novrya last updated on 25/Jan/15 limn→∞[f(a+1/n)f(a)]n=…. Answered by prakash jain last updated on 24/Dec/14 y=[f(a+1/x)f(a)]xlny=x[lnf(a+1x)−lnf(a)]limlnx→∞y=limx→∞[lnf(a+1x)−lnf(a)]1/xRightsidelimitisofform0/0.Assuminglnf(a).limlnx→∞y=limx→∞f′(a+1x)f(a+1x)(−1x2)−1x2lnlimx→∞y=f′(a)f(a)limx→∞y=ef′(a)f(a)Note:Someassumptionsaremadeaboutf(x)toapplyL′Hospitalrule. Answered by 123456 last updated on 24/Dec/14 =limn→∞[f(a+1n)f(a)]n→1∞=limn→∞expln[f(a+1n)f(a)]n=exp[limn→∞nlnf(a+1n)f(a)]→∞⋅0=exp[limn→∞lnf(a+1n)f(a)1n]→00=exp[limn→∞−1n2⋅f′(a+1n)f(a)⋅f(a)f(a+1n)−1n2]=exp[limn→∞f′(a+1n)f(a+1n)]=exp[f′(a)f(a)]assumingf(x)iscontinuosanddiferentiableatx=a Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: f-n-x-1-c-0-n-x-c-1-n-x-2-c-2-n-x-3-c-n-x-x-x-1-x-2-x-n-n-N-f-4-1-f-3-1-Next Next post: Question-65901