Menu Close

lim-n-k-1-n-1-k-1-k-n-1-C-k-1-n-C-r-n-r-n-r-




Question Number 136854 by Raxreedoroid last updated on 26/Mar/21
lim_(n→∞) Σ_(k=1) ^n ((−1)^(k+1) k×^(n−1) C_(k−1) )=?  ^n C_r =((n!)/(r!(n−r)!))
limnnk=1((1)k+1k×n1Ck1)=?nCr=n!r!(nr)!
Commented by mr W last updated on 27/Mar/21
Σ_(k=1) ^n (−1)^(k+1) kC_(k−1) ^(n−1) =0 for any n≥3
nk=1(1)k+1kCk1n1=0foranyn3
Answered by mr W last updated on 27/Mar/21
(1−x)^n =Σ_(k=0) ^n C_k ^n (−x)^k   (1−x)^n =Σ_(k=0) ^n (−1)^k (n/k)C_(k−1) ^(n−1) x^k   −n(1−x)^(n−1) =Σ_(k=0) ^n (−1)^k nC_(k−1) ^(n−1) x^(k−1)   (1−x)^(n−1) =Σ_(k=0) ^n (−1)^(k+1) C_(k−1) ^(n−1) x^(k−1)   x(1−x)^(n−1) =Σ_(k=0) ^n (−1)^(k+1) C_(k−1) ^(n−1) x^k   (1−x)^(n−1) −x(n−1)(1−x)^(n−2) =Σ_(k=0) ^n (−1)^(k+1) kC_(k−1) ^(n−1) x^(k−1)   (1−x)^(n−1) −x(n−1)(1−x)^(n−2) =Σ_(k=1) ^n (−1)^(k+1) kC_(k−1) ^(n−1) x^(k−1)   let x=1  0=Σ_(k=1) ^n (−1)^(k+1) kC_(k−1) ^(n−1)   lim_(n→∞) Σ_(k=1) ^n (−1)^(k+1) kC_(k−1) ^(n−1) =0
(1x)n=nk=0Ckn(x)k(1x)n=nk=0(1)knkCk1n1xkn(1x)n1=nk=0(1)knCk1n1xk1(1x)n1=nk=0(1)k+1Ck1n1xk1x(1x)n1=nk=0(1)k+1Ck1n1xk(1x)n1x(n1)(1x)n2=nk=0(1)k+1kCk1n1xk1(1x)n1x(n1)(1x)n2=nk=1(1)k+1kCk1n1xk1letx=10=nk=1(1)k+1kCk1n1limnnk=1(1)k+1kCk1n1=0

Leave a Reply

Your email address will not be published. Required fields are marked *