Menu Close

lim-n-n-3-n-n-n-3-n-




Question Number 71777 by Henri Boucatchou last updated on 19/Oct/19
  lim_(n→∞)  (((n! + 3^n )/(n^n  + 3^n ))) = ?
$$\:\:\underset{\boldsymbol{{n}}\rightarrow\infty} {\boldsymbol{{lim}}}\:\left(\frac{\boldsymbol{{n}}!\:+\:\mathrm{3}^{\boldsymbol{{n}}} }{\boldsymbol{{n}}^{\boldsymbol{{n}}} \:+\:\mathrm{3}^{\boldsymbol{{n}}} }\right)\:=\:? \\ $$
Commented by mathmax by abdo last updated on 19/Oct/19
let A_n =((n! +3^n )/(n^n  +3^n ))   we have  n!∼n^n e^(−n) (√(2πn))(stirling) ⇒  A_n ∼ ((n^n  e^(−n) (√(2πn))+3^n )/(n^n  +3^n )) =((n^n { e^(−n) (√(2πn))+((3/n))^n })/(n^n (1+((3/n))^n )))  =((e^(−n) (√(2πn))+((3/n))^n )/(1+((3/n))^n ))    we have lim_(n→+∞)  e^(−n) (√(2πn)) =0 and  ((3/n))^n =e^(nln((3/n)))   we use the changement (3/n) =t   ⇒lim_(n→+∞) ((3/n))^n =lim_(t→0)  e^((3/t)ln(t))   =lim_(t→0^+ )    e^((3tln(t))/t^2 )   =0 ⇒lim_(n→+∞)  A_n =0
$${let}\:{A}_{{n}} =\frac{{n}!\:+\mathrm{3}^{{n}} }{{n}^{{n}} \:+\mathrm{3}^{{n}} }\:\:\:{we}\:{have}\:\:{n}!\sim{n}^{{n}} {e}^{−{n}} \sqrt{\mathrm{2}\pi{n}}\left({stirling}\right)\:\Rightarrow \\ $$$${A}_{{n}} \sim\:\frac{{n}^{{n}} \:{e}^{−{n}} \sqrt{\mathrm{2}\pi{n}}+\mathrm{3}^{{n}} }{{n}^{{n}} \:+\mathrm{3}^{{n}} }\:=\frac{{n}^{{n}} \left\{\:{e}^{−{n}} \sqrt{\mathrm{2}\pi{n}}+\left(\frac{\mathrm{3}}{{n}}\right)^{{n}} \right\}}{{n}^{{n}} \left(\mathrm{1}+\left(\frac{\mathrm{3}}{{n}}\right)^{{n}} \right)} \\ $$$$=\frac{{e}^{−{n}} \sqrt{\mathrm{2}\pi{n}}+\left(\frac{\mathrm{3}}{{n}}\right)^{{n}} }{\mathrm{1}+\left(\frac{\mathrm{3}}{{n}}\right)^{{n}} }\: \\ $$$$\:{we}\:{have}\:{lim}_{{n}\rightarrow+\infty} \:{e}^{−{n}} \sqrt{\mathrm{2}\pi{n}}\:=\mathrm{0}\:{and}\:\:\left(\frac{\mathrm{3}}{{n}}\right)^{{n}} ={e}^{{nln}\left(\frac{\mathrm{3}}{{n}}\right)} \\ $$$${we}\:{use}\:{the}\:{changement}\:\frac{\mathrm{3}}{{n}}\:={t}\:\:\:\Rightarrow{lim}_{{n}\rightarrow+\infty} \left(\frac{\mathrm{3}}{{n}}\right)^{{n}} ={lim}_{{t}\rightarrow\mathrm{0}} \:{e}^{\frac{\mathrm{3}}{{t}}{ln}\left({t}\right)} \\ $$$$={lim}_{{t}\rightarrow\mathrm{0}^{+} } \:\:\:{e}^{\frac{\mathrm{3}{tln}\left({t}\right)}{{t}^{\mathrm{2}} }} \:\:=\mathrm{0}\:\Rightarrow{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} =\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *