Menu Close

lim-n-S-i-1-n-i-n-1-L-S-R-S-gt-0-What-can-we-tell-about-L-Does-there-exist-a-limit-Is-it-positive-negative-




Question Number 5207 by FilupSmith last updated on 30/Apr/16
lim_(n→∞)  ((S−(Σ_(i=1) ^n i!))/n)−1=L  S∈R,  S>0    What can we tell about L?    Does there exist a limit?  Is it positive/negative?
limnS(ni=1i!)n1=LSR,S>0WhatcanwetellaboutL?Doesthereexistalimit?Isitpositive/negative?
Commented by FilupSmith last updated on 30/Apr/16
f=Σ_(i=1) ^n i!  ⇒  (df/dn) = (d/dn)(Σ_(i=1) ^n i!)  lim_(n→∞)  f = ∞    ∴ lim_(n→∞)  ((S−(Σ_(i=1) ^n i!))/n)−1 ⇒ ((S−∞)/∞)−1    ∴ L+1 = lim_(n→∞)  (((d/dn)(S−(Σ_(i=1) ^n i!)))/((d/dn)n))  ∴ L+1 = lim_(n→∞)  ((1−(df/dn))/1)  L=lim_(n→∞)  −(df/dn)    What is    (d/dn)(Σ_(i=1) ^n i!)     ???
f=ni=1i!dfdn=ddn(ni=1i!)limnf=limnS(ni=1i!)n1S1L+1=limnddn(S(ni=1i!))ddnnL+1=limn1dfdn1L=limndfdnWhatisddn(ni=1i!)???
Commented by FilupSmith last updated on 30/Apr/16
Σ_(i=1) ^n i!=n!+(n−1)!+(n−2)!+...+1!  Does:  (d/dn)(Σ_(i=1) ^n i!)=Γ(n+1)ψ^((0)) (n+1)+Γ(n)ψ^((0)) (n)+Γ(n−1)ψ^((0)) (n−1)+...+Γ(2)ψ^((0)) (2)  ∴ (d/dn)(Σ_(i=1) ^n i!)=Σ_(i=1) ^n (Γ(i+1)ψ^((0)) (i+1))
ni=1i!=n!+(n1)!+(n2)!++1!Does:ddn(ni=1i!)=Γ(n+1)ψ(0)(n+1)+Γ(n)ψ(0)(n)+Γ(n1)ψ(0)(n1)++Γ(2)ψ(0)(2)ddn(ni=1i!)=ni=1(Γ(i+1)ψ(0)(i+1))

Leave a Reply

Your email address will not be published. Required fields are marked *