Menu Close

lim-x-0-0-x-2-4-t-3-dt-x-2-




Question Number 78526 by TawaTawa last updated on 18/Jan/20
lim_(x→0)   [((∫_(  0) ^(  x^2 )  (√(4 + t^3 ))  dt)/x^2 )]
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\left[\frac{\int_{\:\:\mathrm{0}} ^{\:\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} } \:\sqrt{\mathrm{4}\:+\:\boldsymbol{\mathrm{t}}^{\mathrm{3}} }\:\:\boldsymbol{\mathrm{dt}}}{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\right] \\ $$
Commented by mr W last updated on 18/Jan/20
lim_(x→0)   [((∫_(  0) ^(  x^2 )  (√(4 + t^3 ))  dt)/x^2 )]  =lim_(x→0)   [(( (√(4 +(x^2 )^3 ))  2x)/(2x))]  =lim_(x→0)   [(√(4+x^6 ))]  =(√4)  =2
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\left[\frac{\int_{\:\:\mathrm{0}} ^{\:\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} } \:\sqrt{\mathrm{4}\:+\:\boldsymbol{\mathrm{t}}^{\mathrm{3}} }\:\:\boldsymbol{\mathrm{dt}}}{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\right] \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\left[\frac{\:\sqrt{\mathrm{4}\:+\left({x}^{\mathrm{2}} \right)^{\mathrm{3}} }\:\:\mathrm{2}{x}}{\mathrm{2}{x}}\right] \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\left[\sqrt{\mathrm{4}+{x}^{\mathrm{6}} }\right] \\ $$$$=\sqrt{\mathrm{4}} \\ $$$$=\mathrm{2} \\ $$
Commented by TawaTawa last updated on 18/Jan/20
God bless you sir.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Commented by mr W last updated on 18/Jan/20
what about  lim_(x→0)   [((∫_(  x) ^(  x^2 )  (√(4 + t^3 ))  dt)/x^2 )] ?
$${what}\:{about} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\left[\frac{\int_{\:\:{x}} ^{\:\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} } \:\sqrt{\mathrm{4}\:+\:\boldsymbol{\mathrm{t}}^{\mathrm{3}} }\:\:\boldsymbol{\mathrm{dt}}}{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\right]\:? \\ $$
Commented by TawaTawa last updated on 18/Jan/20
I was about to ask a question sir.  did you use the integration sign.  how come you get   (√(4 + (x^2 )^3 )) × 2x
$$\mathrm{I}\:\mathrm{was}\:\mathrm{about}\:\mathrm{to}\:\mathrm{ask}\:\mathrm{a}\:\mathrm{question}\:\mathrm{sir}. \\ $$$$\mathrm{did}\:\mathrm{you}\:\mathrm{use}\:\mathrm{the}\:\mathrm{integration}\:\mathrm{sign}.\:\:\mathrm{how}\:\mathrm{come}\:\mathrm{you}\:\mathrm{get}\:\:\:\sqrt{\mathrm{4}\:+\:\left(\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}} }\:×\:\mathrm{2x} \\ $$
Commented by TawaTawa last updated on 18/Jan/20
I will solve your new question sir, if i understand how  you integrate
$$\mathrm{I}\:\mathrm{will}\:\mathrm{solve}\:\mathrm{your}\:\mathrm{new}\:\mathrm{question}\:\mathrm{sir},\:\mathrm{if}\:\mathrm{i}\:\mathrm{understand}\:\mathrm{how} \\ $$$$\mathrm{you}\:\mathrm{integrate} \\ $$
Commented by mr W last updated on 18/Jan/20
see Q#78021
$${see}\:{Q}#\mathrm{78021} \\ $$
Commented by john santu last updated on 18/Jan/20
lim_(x→0) (((√(4+x^6 )) ×2x−(√(4+x^3 )) ×1)/(2x))  = lim_(x→0)  (√(4+x^6 )) −lim_(x→0)  ((x(√((4/x^2 )+x)))/(2x))=−∞
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\sqrt{\mathrm{4}+{x}^{\mathrm{6}} }\:×\mathrm{2}{x}−\sqrt{\mathrm{4}+{x}^{\mathrm{3}} }\:×\mathrm{1}}{\mathrm{2}{x}} \\ $$$$=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\sqrt{\mathrm{4}+{x}^{\mathrm{6}} }\:−\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}\sqrt{\frac{\mathrm{4}}{{x}^{\mathrm{2}} }+{x}}}{\mathrm{2}{x}}=−\infty \\ $$
Commented by mr W last updated on 18/Jan/20
correct sir!  but both −∞ and +∞, so just =∞.
$${correct}\:{sir}! \\ $$$${but}\:{both}\:−\infty\:{and}\:+\infty,\:{so}\:{just}\:=\infty. \\ $$
Commented by jagoll last updated on 18/Jan/20
yes sir
$${yes}\:{sir} \\ $$
Commented by TawaTawa last updated on 18/Jan/20
Checked sir, i get the approach now.  =     lim_(x→0)   [(((√(4 + (x^2 )^3 )) × 2x   −  (√(4 + x^3 )) × 1)/(2x))]   {The power of x decreases}  =    [(((√(4 + 0)) × 2(0)  −  (√(4 +  0)))/(2(0)))]  =    [((  −  (√4))/(2(0)))]  =    − (2/0)  =    ∞
$$\mathrm{Checked}\:\mathrm{sir},\:\mathrm{i}\:\mathrm{get}\:\mathrm{the}\:\mathrm{approach}\:\mathrm{now}. \\ $$$$=\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\left[\frac{\sqrt{\mathrm{4}\:+\:\left(\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}} }\:×\:\mathrm{2x}\:\:\:−\:\:\sqrt{\mathrm{4}\:+\:\mathrm{x}^{\mathrm{3}} }\:×\:\mathrm{1}}{\mathrm{2x}}\right]\:\:\:\left\{\mathrm{The}\:\mathrm{power}\:\mathrm{of}\:\mathrm{x}\:\mathrm{decreases}\right\} \\ $$$$=\:\:\:\:\left[\frac{\sqrt{\mathrm{4}\:+\:\mathrm{0}}\:×\:\mathrm{2}\left(\mathrm{0}\right)\:\:−\:\:\sqrt{\mathrm{4}\:+\:\:\mathrm{0}}}{\mathrm{2}\left(\mathrm{0}\right)}\right] \\ $$$$=\:\:\:\:\left[\frac{\:\:−\:\:\sqrt{\mathrm{4}}}{\mathrm{2}\left(\mathrm{0}\right)}\right] \\ $$$$=\:\:\:\:−\:\frac{\mathrm{2}}{\mathrm{0}} \\ $$$$=\:\:\:\:\infty \\ $$
Commented by mathmax by abdo last updated on 18/Jan/20
let f(x)=(1/x^2 ) ∫_x ^x^2  (√(4+t^3 ))dt       ∃c_x  ∈]x,x^2 [ / f(x)=((√(4+c_x ^2 ))/x^2 ) ∫_x ^x^2   dt =(√(4+c_x ^2 ))×((x^2 −x)/x^2 )  =(√(4+c_x ^2 )) ×(1−(1/x)) ⇒lim_(x→0^+ )   f(x)=−∞
$${let}\:{f}\left({x}\right)=\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:\int_{{x}} ^{{x}^{\mathrm{2}} } \sqrt{\mathrm{4}+{t}^{\mathrm{3}} }{dt}\:\:\:\:\: \\ $$$$\left.\exists{c}_{{x}} \:\in\right]{x},{x}^{\mathrm{2}} \left[\:/\:{f}\left({x}\right)=\frac{\sqrt{\mathrm{4}+{c}_{{x}} ^{\mathrm{2}} }}{{x}^{\mathrm{2}} }\:\int_{{x}} ^{{x}^{\mathrm{2}} } \:{dt}\:=\sqrt{\mathrm{4}+{c}_{{x}} ^{\mathrm{2}} }×\frac{{x}^{\mathrm{2}} −{x}}{{x}^{\mathrm{2}} }\right. \\ $$$$=\sqrt{\mathrm{4}+{c}_{{x}} ^{\mathrm{2}} }\:×\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)\:\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:{f}\left({x}\right)=−\infty \\ $$
Commented by TawaTawa last updated on 18/Jan/20
God bless you sir.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Commented by john santu last updated on 19/Jan/20
thanks you
$${thanks}\:{you} \\ $$
Commented by mathmax by abdo last updated on 19/Jan/20
you are welcome
$${you}\:{are}\:{welcome} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *