Menu Close

lim-x-0-1-cos-1-cos-x-x-tan-x-x-




Question Number 140905 by bramlexs22 last updated on 14/May/21
 lim_(x→0)  ((1−cos (1−cos x))/(x (tan x−x))) =?
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\left(\mathrm{1}−\mathrm{cos}\:\mathrm{x}\right)}{\mathrm{x}\:\left(\mathrm{tan}\:\mathrm{x}−\mathrm{x}\right)}\:=? \\ $$
Answered by bramlexs22 last updated on 14/May/21
Answered by mathmax by abdo last updated on 14/May/21
let L(x)=((1−cos(1−cosx))/(x(tanx−x)))  we have 1−cosx ∼(x^2 /2) ⇒cos(1−cosx)∼cos((x^2 /2))∼1−(x^4 /8) ⇒  1−cos(1−cosx)∼(x^4 /8)  tanx ∼x+(x^3 /3) ⇒tanx −x ∼(x^3 /3) ⇒x(tanx−x)∼(x^4 /3) ⇒  f(x)∼(x^4 /8).(3/x^4 ) ⇒lim_(x→0) f(x)=(3/8)
$$\mathrm{let}\:\mathrm{L}\left(\mathrm{x}\right)=\frac{\mathrm{1}−\mathrm{cos}\left(\mathrm{1}−\mathrm{cosx}\right)}{\mathrm{x}\left(\mathrm{tanx}−\mathrm{x}\right)} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{1}−\mathrm{cosx}\:\sim\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow\mathrm{cos}\left(\mathrm{1}−\mathrm{cosx}\right)\sim\mathrm{cos}\left(\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\right)\sim\mathrm{1}−\frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{8}}\:\Rightarrow \\ $$$$\mathrm{1}−\mathrm{cos}\left(\mathrm{1}−\mathrm{cosx}\right)\sim\frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{8}} \\ $$$$\mathrm{tanx}\:\sim\mathrm{x}+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}\:\Rightarrow\mathrm{tanx}\:−\mathrm{x}\:\sim\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}\:\Rightarrow\mathrm{x}\left(\mathrm{tanx}−\mathrm{x}\right)\sim\frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{3}}\:\Rightarrow \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\sim\frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{8}}.\frac{\mathrm{3}}{\mathrm{x}^{\mathrm{4}} }\:\Rightarrow\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{3}}{\mathrm{8}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *