Menu Close

lim-x-0-1-cos-x-x-is-equals-to-




Question Number 12881 by kunalshukla95040 last updated on 05/May/17
((lim)/(x→0))((√(1−cos x))/x)  is equals to.
$$\frac{{lim}}{{x}\rightarrow\mathrm{0}}\frac{\sqrt{\mathrm{1}−\mathrm{cos}\:{x}}}{{x}} \\ $$$${is}\:{equals}\:{to}. \\ $$
Answered by nume1114 last updated on 05/May/17
    lim_(x→0) ((√(1−cos x))/x)  =lim_(x→0) ((√(1−(1−2sin^2 ((x/2)))))/x)  =lim_(x→0) (((√2)sin((x/2)))/(2∙(x/2)))  =((√2)/2)lim_(x→0) ((sin((x/2)))/(x/2))  =((√2)/2)  (or (1/( (√2))))
$$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\sqrt{\mathrm{1}−\mathrm{cos}\:{x}}}{{x}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\sqrt{\mathrm{1}−\left(\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\right)}}{{x}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\sqrt{\mathrm{2}}\mathrm{sin}\left(\frac{{x}}{\mathrm{2}}\right)}{\mathrm{2}\centerdot\frac{{x}}{\mathrm{2}}} \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\left(\frac{{x}}{\mathrm{2}}\right)}{\frac{{x}}{\mathrm{2}}} \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\:\left({or}\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *