Menu Close

lim-x-0-1-sin-4x-cos-2x-x-1-1-x-




Question Number 78324 by jagoll last updated on 16/Jan/20
lim_(x→0)  ((1+sin 4x−cos 2x)/( (√(x+1))−(√(1−x))))=
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}+\mathrm{sin}\:\mathrm{4}{x}−\mathrm{cos}\:\mathrm{2}{x}}{\:\sqrt{{x}+\mathrm{1}}−\sqrt{\mathrm{1}−{x}}}= \\ $$
Commented by john santu last updated on 16/Jan/20
lim_(x→0)  ((√(x+1))+(√(1−x)))×lim_(x→0)  ((2sin^2 x+2sin 2xcos 2x)/(2x))  = 2×lim_(x→0)  ((2sin x{sin x+2cos xcos 2x})/(2x))  = 2×{2}=4
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\sqrt{{x}+\mathrm{1}}+\sqrt{\mathrm{1}−{x}}\right)×\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2sin}\:^{\mathrm{2}} {x}+\mathrm{2sin}\:\mathrm{2}{x}\mathrm{cos}\:\mathrm{2}{x}}{\mathrm{2}{x}} \\ $$$$=\:\mathrm{2}×\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2sin}\:{x}\left\{\mathrm{sin}\:{x}+\mathrm{2cos}\:{x}\mathrm{cos}\:\mathrm{2}{x}\right\}}{\mathrm{2}{x}} \\ $$$$=\:\mathrm{2}×\left\{\mathrm{2}\right\}=\mathrm{4} \\ $$
Commented by mathmax by abdo last updated on 16/Jan/20
let f(x)=((1+sin(4x)−cos(2x))/( (√(1+x))−(√(1−x))))  we have   (√(1+x))∼1+(x/2)  and (√(1−x))∼1−(x/2)  also son(4x)∼4x    cos(2x)∼1−2x^2    (x →0) ⇒f(x)∼((1+4x−1+2x^2 )/(1+(x/2)−1+(x/2)))  ⇒f(x)∼((2x^2 +4x)/x) ⇒f(x)∼2x +4 ⇒lim_(x→0) f(x)=4
$${let}\:{f}\left({x}\right)=\frac{\mathrm{1}+{sin}\left(\mathrm{4}{x}\right)−{cos}\left(\mathrm{2}{x}\right)}{\:\sqrt{\mathrm{1}+{x}}−\sqrt{\mathrm{1}−{x}}}\:\:{we}\:{have}\: \\ $$$$\sqrt{\mathrm{1}+{x}}\sim\mathrm{1}+\frac{{x}}{\mathrm{2}}\:\:{and}\:\sqrt{\mathrm{1}−{x}}\sim\mathrm{1}−\frac{{x}}{\mathrm{2}}\:\:{also}\:{son}\left(\mathrm{4}{x}\right)\sim\mathrm{4}{x}\:\: \\ $$$${cos}\left(\mathrm{2}{x}\right)\sim\mathrm{1}−\mathrm{2}{x}^{\mathrm{2}} \:\:\:\left({x}\:\rightarrow\mathrm{0}\right)\:\Rightarrow{f}\left({x}\right)\sim\frac{\mathrm{1}+\mathrm{4}{x}−\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} }{\mathrm{1}+\frac{{x}}{\mathrm{2}}−\mathrm{1}+\frac{{x}}{\mathrm{2}}} \\ $$$$\Rightarrow{f}\left({x}\right)\sim\frac{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{4}{x}}{{x}}\:\Rightarrow{f}\left({x}\right)\sim\mathrm{2}{x}\:+\mathrm{4}\:\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}} {f}\left({x}\right)=\mathrm{4} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *