Menu Close

lim-x-0-1-x-2-x-1-x-3-x-2-x-2-




Question Number 140000 by bramlexs22 last updated on 03/May/21
 lim_(x→0)  (((1+x.2^x )/(1+x.3^x )))^(2/x^2 ) =?
limx0(1+x.2x1+x.3x)2x2=?
Commented by MJS_new last updated on 03/May/21
the answer should be (4/9) I think
theanswershouldbe49Ithink
Commented by bramlexs22 last updated on 03/May/21
yes the answer is (4/9)
yestheansweris49
Answered by TheSupreme last updated on 03/May/21
(((1+ln(2)x^2 )/(1+ln(3)x^2 )))^(2/x^2 )   u=(1/x^2 )  lim (((1+((ln(2))/u^2 ))/(1+((ln(3))/u^2 ))))^(2u^2 ) =lim(((u^2 +ln(2))/(u^2 +ln(3))))^(2u^2 ) =lim(1+((ln(2)−ln(3))/(ln(3)+u^2 )))^(2u^2 )   v=u^2 +ln(3)  lim (1+((ln(2)−ln(3))/v))^(2v−2ln(3))   [e^(2/(ln(2)−ln(3))) ]^
(1+ln(2)x21+ln(3)x2)2x2u=1x2lim(1+ln(2)u21+ln(3)u2)2u2=lim(u2+ln(2)u2+ln(3))2u2=lim(1+ln(2)ln(3)ln(3)+u2)2u2v=u2+ln(3)lim(1+ln(2)ln(3)v)2v2ln(3)[e2ln(2)ln(3)]
Answered by bobhans last updated on 03/May/21
L = lim_(x→0)  (((1+x.2^x )/(1+x.3^x )))^(2/x^2 )   ln L = 2lim_(x→0)  ((ln (1+x.2^x )−ln (1+x.3^x ))/x^2 )  ln L=2 lim_(x→0)  ((ln (1+x+x^2 ln 2+o(x^2 ))−ln (1+x+x^2 ln 3+o(x^2 )))/x^2 )  ln L=2 lim_(x→0)  (((x+x^2 ln 2+o(x^2 )−(x+x^2 ln 3+o(x^2 )))/x^2 )  ln L =2 lim_(x→0)  ((x^2 (ln ((2/3))))/x^2 )  ln L = ln ((4/9)) ⇒ L = e^(ln ((4/9)))   L = (4/9)
L=limx0(1+x.2x1+x.3x)2x2lnL=2limx0ln(1+x.2x)ln(1+x.3x)x2lnL=2limx0ln(1+x+x2ln2+o(x2))ln(1+x+x2ln3+o(x2))x2lnL=2limx0(x+x2ln2+o(x2)(x+x2ln3+o(x2))x2lnL=2limx0x2(ln(23))x2lnL=ln(49)L=eln(49)L=49

Leave a Reply

Your email address will not be published. Required fields are marked *