Menu Close

lim-x-0-1-x-2-x-2-pi-3-pi-3-cos-x-x-dx-




Question Number 78021 by jagoll last updated on 13/Jan/20
lim_(x→0)  (1/x^2 )[∫^(x^2 +(π/3)) _(π/3) ((cos x)/x) dx ] =
limx01x2[π3x2+π3cosxxdx]=
Commented by mr W last updated on 13/Jan/20
lim_(x→0)  (1/x^2 )[∫^(x^2 +(π/3)) _(π/3) ((cos x)/x) dx ]  =lim_(x→0)  ((((cos (x^2 +(π/3)))/(x^2 +(π/3)))×2x)/(2x))  =lim_(x→0)  ((cos (x^2 +(π/3)))/(x^2 +(π/3)))  =(3/π)×(1/2)=(3/(2π))
limx01x2[π3x2+π3cosxxdx]=limx0cos(x2+π3)x2+π3×2x2x=limx0cos(x2+π3)x2+π3=3π×12=32π
Commented by jagoll last updated on 13/Jan/20
by using fundamental calculus theorem  sir? thanks
byusingfundamentalcalculustheoremsir?thanks
Commented by mr W last updated on 13/Jan/20
i don′t know what is “fundamental  calculus theorem”.
idontknowwhatisfundamentalcalculustheorem.
Commented by jagoll last updated on 13/Jan/20
(d/dx)[∫_0 ^x  f(u)du] = f(x) sir
ddx[x0f(u)du]=f(x)sir
Commented by mr W last updated on 13/Jan/20
generally:  (d/dx)[∫_(h(x)) ^(g(x))  f(u)du] = f(g(x))g′(x)−f(h(x))h′(x)
generally:ddx[g(x)h(x)f(u)du]=f(g(x))g(x)f(h(x))h(x)
Commented by jagoll last updated on 13/Jan/20
okay sir thank you
okaysirthankyou
Commented by msup trace by abdo last updated on 13/Jan/20
let A(x)=∫_(π/3) ^(x^2 +(π/3))  ((cost)/t)dt  ∃ c ∈](π/3),x^2 +(π/3)[ /  A(x)=(1/c) ∫_(π/3) ^(x^2  +(π/3)) cost dt  =(1/c)(sin(x^2 +(π/3))−((√3)/2))  ⇒((A(x))/x^2 ) =((sin(x^2 +(π/3))−((√3)/2))/(cx^2 ))  =(((1/2)sin(x^2 )+((√3)/2)cos(x^2 )−((√3)/2))/(cx^2 ))  ∼(1/(2cx^2 )){x^2 +(√3)(1−(x^4 /2))−(√3)}  =(1/(2c))−(x^2 /(4c)) ⇒lim_(x→0)  A(x)  =(1/(2×(π/3))) =(3/(2π)) .
letA(x)=π3x2+π3costtdtc]π3,x2+π3[/A(x)=1cπ3x2+π3costdt=1c(sin(x2+π3)32)A(x)x2=sin(x2+π3)32cx2=12sin(x2)+32cos(x2)32cx212cx2{x2+3(1x42)3}=12cx24climx0A(x)=12×π3=32π.

Leave a Reply

Your email address will not be published. Required fields are marked *