Question Number 78021 by jagoll last updated on 13/Jan/20
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\left[\underset{\frac{\pi}{\mathrm{3}}} {\int}^{{x}^{\mathrm{2}} +\frac{\pi}{\mathrm{3}}} \frac{\mathrm{cos}\:{x}}{{x}}\:{dx}\:\right]\:= \\ $$
Commented by mr W last updated on 13/Jan/20
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\left[\underset{\frac{\pi}{\mathrm{3}}} {\int}^{{x}^{\mathrm{2}} +\frac{\pi}{\mathrm{3}}} \frac{\mathrm{cos}\:{x}}{{x}}\:{dx}\:\right] \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{cos}\:\left({x}^{\mathrm{2}} +\frac{\pi}{\mathrm{3}}\right)}{{x}^{\mathrm{2}} +\frac{\pi}{\mathrm{3}}}×\mathrm{2}{x}}{\mathrm{2}{x}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\left({x}^{\mathrm{2}} +\frac{\pi}{\mathrm{3}}\right)}{{x}^{\mathrm{2}} +\frac{\pi}{\mathrm{3}}} \\ $$$$=\frac{\mathrm{3}}{\pi}×\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{2}\pi} \\ $$
Commented by jagoll last updated on 13/Jan/20
$${by}\:{using}\:{fundamental}\:{calculus}\:{theorem} \\ $$$${sir}?\:{thanks}\: \\ $$
Commented by mr W last updated on 13/Jan/20
$${i}\:{don}'{t}\:{know}\:{what}\:{is}\:“{fundamental} \\ $$$${calculus}\:{theorem}''. \\ $$
Commented by jagoll last updated on 13/Jan/20
$$\frac{{d}}{{dx}}\left[\underset{\mathrm{0}} {\overset{{x}} {\int}}\:{f}\left({u}\right){du}\right]\:=\:{f}\left({x}\right)\:{sir} \\ $$
Commented by mr W last updated on 13/Jan/20
$${generally}: \\ $$$$\frac{{d}}{{dx}}\left[\underset{{h}\left({x}\right)} {\overset{{g}\left({x}\right)} {\int}}\:{f}\left({u}\right){du}\right]\:=\:{f}\left({g}\left({x}\right)\right){g}'\left({x}\right)−{f}\left({h}\left({x}\right)\right){h}'\left({x}\right) \\ $$
Commented by jagoll last updated on 13/Jan/20
$${okay}\:{sir}\:{thank}\:{you} \\ $$
Commented by msup trace by abdo last updated on 13/Jan/20
$${let}\:{A}\left({x}\right)=\int_{\frac{\pi}{\mathrm{3}}} ^{{x}^{\mathrm{2}} +\frac{\pi}{\mathrm{3}}} \:\frac{{cost}}{{t}}{dt} \\ $$$$\left.\exists\:{c}\:\in\right]\frac{\pi}{\mathrm{3}},{x}^{\mathrm{2}} +\frac{\pi}{\mathrm{3}}\left[\:/\right. \\ $$$${A}\left({x}\right)=\frac{\mathrm{1}}{{c}}\:\int_{\frac{\pi}{\mathrm{3}}} ^{{x}^{\mathrm{2}} \:+\frac{\pi}{\mathrm{3}}} {cost}\:{dt} \\ $$$$=\frac{\mathrm{1}}{{c}}\left({sin}\left({x}^{\mathrm{2}} +\frac{\pi}{\mathrm{3}}\right)−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\frac{{A}\left({x}\right)}{{x}^{\mathrm{2}} }\:=\frac{{sin}\left({x}^{\mathrm{2}} +\frac{\pi}{\mathrm{3}}\right)−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}{{cx}^{\mathrm{2}} } \\ $$$$=\frac{\frac{\mathrm{1}}{\mathrm{2}}{sin}\left({x}^{\mathrm{2}} \right)+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{cos}\left({x}^{\mathrm{2}} \right)−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}{{cx}^{\mathrm{2}} } \\ $$$$\sim\frac{\mathrm{1}}{\mathrm{2}{cx}^{\mathrm{2}} }\left\{{x}^{\mathrm{2}} +\sqrt{\mathrm{3}}\left(\mathrm{1}−\frac{{x}^{\mathrm{4}} }{\mathrm{2}}\right)−\sqrt{\mathrm{3}}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{c}}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}{c}}\:\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}} \:{A}\left({x}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}×\frac{\pi}{\mathrm{3}}}\:=\frac{\mathrm{3}}{\mathrm{2}\pi}\:. \\ $$$$ \\ $$