Menu Close

lim-x-0-3e-x-e-x-2-x-




Question Number 4448 by Rasheed Soomro last updated on 29/Jan/16
lim_(x→0) ((3e^x −e^(−x) −2)/x)=?
limx03exex2x=?
Answered by Yozzii last updated on 29/Jan/16
One approach can involve the use of  the series expansion of e^x  near x=0.  e^x =1+x+(x^2 /(2!))+(x^3 /(3!))+(x^4 /(4!))+...=Σ_(r=0) ^∞ (x^r /(r!))  3e^x −e^(−x)   =3(1+x+(x^2 /(2!))+(x^3 /(3!))+(x^4 /(4!))...)−(1−x+(x^2 /(2!))−(x^3 /(3!))+(x^4 /(4!))−...)  =2+4x+2×(x^2 /(2!))+4×(x^3 /(3!))+2×(x^4 /(4!))+...  3e^x −e^(−x) −2=4x+2×(x^2 /(2!))+4×(x^3 /(3!))+2×(x^4 /(4!))+...  ((3e^x −e^(−x) −2)/x)=4+x+4×(x^2 /(3!))+2×(x^3 /(4!))+...  ∴lim_(x→0) ((3e^x −e^(−x) −2)/x)=lim_(x→0) (4+x+4×(x^2 /(3!))+2×(x^3 /(4!))+...)  lim_(x→0) ((3e^x −e^(−x) −2)/x)=4+0+0+0+...+0+0+...  lim_(x→0) ((3e^x −e^(−x) −2)/x)=4.
Oneapproachcaninvolvetheuseoftheseriesexpansionofexnearx=0.ex=1+x+x22!+x33!+x44!+=r=0xrr!3exex=3(1+x+x22!+x33!+x44!)(1x+x22!x33!+x44!)=2+4x+2×x22!+4×x33!+2×x44!+3exex2=4x+2×x22!+4×x33!+2×x44!+3exex2x=4+x+4×x23!+2×x34!+limx03exex2x=limx0(4+x+4×x23!+2×x34!+)limx03exex2x=4+0+0+0++0+0+limx03exex2x=4.
Answered by FilupSmith last updated on 29/Jan/16
L′hopital′s Law    =lim_(x→0) (3e^x +e^(−x) )  =3(1)+1  =4
LhopitalsLaw=limx0(3ex+ex)=3(1)+1=4
Answered by Rasheed Soomro last updated on 29/Jan/16
Using lim_(x→0) ((e^x −1)/x)=1  lim_(x→0) ((3e^x −e^(−x) −2)/x)  =lim_(x→0) ((3e^x −3−e^(−x) +1)/x)  =lim_(x→0) ((3(e^x −1)−(e^(−x) −1))/x)  =lim_(x→0) [((3(e^x −1))/x)+((e^(−x) −1)/(−x))]  x→0 ⇒−x→0  =3lim_(x→0) ((e^x −1)/x)+lim_(−x→0) ((e^(−x) −1)/(−x))  =3(1)+1=4
Usinglimx0ex1x=1limx03exex2x=limx03ex3ex+1x=limx03(ex1)(ex1)x=limx0[3(ex1)x+ex1x]x0x0=3limx0ex1x+limx0ex1x=3(1)+1=4

Leave a Reply

Your email address will not be published. Required fields are marked *