Menu Close

lim-x-0-sin-x-1-x-




Question Number 141964 by gsk2684 last updated on 25/May/21
lim_(x→0)  (sin x)^(1/x) =?
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{sin}\:{x}\right)^{\frac{\mathrm{1}}{{x}}} =? \\ $$
Commented by gsk2684 last updated on 25/May/21
solution please
$${solution}\:{please} \\ $$
Answered by iloveisrael last updated on 25/May/21
 L=lim_(x→0) (sin x)^(1/x)   ln L = lim_(x→0)  ((ln (sin x))/x)   ln L=lim_(x→0)  ((ln (1+(sin x−1)))/x)  ln L= lim_(x→0)  ((sin x−1)/x) =−∞   L = e^(−∞)  = 0
$$\:{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{sin}\:{x}\right)^{\frac{\mathrm{1}}{{x}}} \\ $$$$\mathrm{ln}\:{L}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{ln}\:\left(\mathrm{sin}\:{x}\right)}{{x}}\: \\ $$$$\mathrm{ln}\:{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{ln}\:\left(\mathrm{1}+\left(\mathrm{sin}\:{x}−\mathrm{1}\right)\right)}{{x}} \\ $$$$\mathrm{ln}\:{L}=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:{x}−\mathrm{1}}{{x}}\:=−\infty \\ $$$$\:{L}\:=\:{e}^{−\infty} \:=\:\mathrm{0} \\ $$
Commented by gsk2684 last updated on 25/May/21
thank you
$${thank}\:{you} \\ $$
Answered by mathmax by abdo last updated on 25/May/21
f(x)=(sinx)^(1/x)  ⇒f(x)=e^((1/x)log(sinx))   we have  sinx∼x  ⇒log(sinx)∼logx ⇒((log(sinx))/x)∼((logx)/x)  lim_(x→0^+ )   ((logx)/x) =_(x=(1/t))   lim_(t→+∞)   −tlogt =−∞ ⇒  lim_(x→0) f(x)=e^(−∞)  =0
$$\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{sinx}\right)^{\frac{\mathrm{1}}{\mathrm{x}}} \:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{x}}\mathrm{log}\left(\mathrm{sinx}\right)} \:\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{sinx}\sim\mathrm{x}\:\:\Rightarrow\mathrm{log}\left(\mathrm{sinx}\right)\sim\mathrm{logx}\:\Rightarrow\frac{\mathrm{log}\left(\mathrm{sinx}\right)}{\mathrm{x}}\sim\frac{\mathrm{logx}}{\mathrm{x}} \\ $$$$\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}^{+} } \:\:\frac{\mathrm{logx}}{\mathrm{x}}\:=_{\mathrm{x}=\frac{\mathrm{1}}{\mathrm{t}}} \:\:\mathrm{lim}_{\mathrm{t}\rightarrow+\infty} \:\:−\mathrm{tlogt}\:=−\infty\:\Rightarrow \\ $$$$\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \mathrm{f}\left(\mathrm{x}\right)=\mathrm{e}^{−\infty} \:=\mathrm{0} \\ $$$$ \\ $$
Commented by gsk2684 last updated on 25/May/21
thank you
$${thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *