Menu Close

lim-x-0-sin-x-x-1-how-is-this-so-




Question Number 4773 by madscientist last updated on 08/Mar/16
lim_(x→0 )  ((sin(x))/x)= 1  how is this so?
limx0sin(x)x=1howisthisso?
Commented by Yozzii last updated on 13/Mar/16
For x near zero, the function sinx  is very well approximated by the   Macluarin expansion   x−(x^3 /(3!))+(x^5 /(5!))−(x^7 /(7!))+(x^9 /(9!))+...=Σ_(r=0) ^∞ (((−1)^r x^(2r+1) )/((2r+1)!)).  ∴ ((sinx)/x)=(1/x)(Σ_(r=0) ^∞ (((−1)^r x^(2r+1) )/((2r+1)!)))=Σ_(r=0) ^∞ (((−1)^r x^(2r) )/((2r+1)!))  or ((sinx)/x)=1+Σ_(r=1) ^∞ (((−1)^r x^(2r) )/((2r+1)!)) for x near zero.  ∴ lim_(x→0) ((sinx)/x)=lim_(x→0) (1+Σ_(r=1) ^∞ (((−1)^r x^(2r) )/((2r+1)!)))  =1+Σ_(r=1) ^∞ (((−1)^r 0^(2r) )/((2r+1)!))  =1+0+0+0+...  lim_(x→0) ((sinx)/x)=1.
Forxnearzero,thefunctionsinxisverywellapproximatedbytheMacluarinexpansionxx33!+x55!x77!+x99!+=r=0(1)rx2r+1(2r+1)!.sinxx=1x(r=0(1)rx2r+1(2r+1)!)=r=0(1)rx2r(2r+1)!orsinxx=1+r=1(1)rx2r(2r+1)!forxnearzero.limx0sinxx=limx0(1+r=1(1)rx2r(2r+1)!)=1+r=1(1)r02r(2r+1)!=1+0+0+0+limx0sinxx=1.
Answered by malwaan last updated on 08/Mar/16
lim_(x→0)  ((sin x)/x) =lim_(x→0) ((cos x)/1) =cos(0)=1
limx0sinxx=limx0cosx1=cos(0)=1
Commented by Dnilka228 last updated on 10/Mar/16
lim_a ((sin a)/a)=lim_a ((cos a)/1)=cos (0)=2
limasinaa=limacosa1=cos(0)=2

Leave a Reply

Your email address will not be published. Required fields are marked *