Menu Close

lim-x-0-x-2-x-2-2-1-x-




Question Number 141779 by iloveisrael last updated on 23/May/21
 lim_(x→0)   (x^2 /(x+2−2(√(1+x)))) =?
limx0x2x+221+x=?
Answered by Willson last updated on 23/May/21
lim_(x→0)   (x^2 /(x+2−2(√(1+x)))) = lim_(x→0)  ((2x)/(1−(1/( (√(1+x))))))                            = lim_(x→0)  ((2x(√(1+x)))/( (√(1+x))−1))                            = lim_(x→0)  ((2x(√(1+x))((√(1+x))+1))/(((√(1+x))−1)((√(1+x))+1)))                            = lim_(x→0)  ((2x(√(1+x))((√(1+x))+1))/x)                            = lim_(x→0) 2 (√(1+x))((√(1+x))+1)                            = 4
limx0x2x+221+x=limx02x111+x=limx02x1+x1+x1=limx02x1+x(1+x+1)(1+x1)(1+x+1)=limx02x1+x(1+x+1)x=lim2x01+x(1+x+1)=4
Answered by cherokeesay last updated on 23/May/21
= lim_(x→0)  ((x^2 (x + 2 + 2(√(1 + x))))/((x + 2)^2  −4(1 + x))) =       lim_(x→0)  ((x^2 (x + 2 + 2(√(1 + x))))/(x^2  + 4 −4x −4 −4x)) = 2 + 2 = 4
=limx0x2(x+2+21+x)(x+2)24(1+x)=limx0x2(x+2+21+x)x2+44x44x=2+2=4
Answered by iloveisrael last updated on 23/May/21
Answered by mathmax by abdo last updated on 23/May/21
letf(x)=(x^2 /(x+2−2(√(1+x)))) ⇒lim_(x→0) f(x)  =lim_(x→0)     ((x^2 ( x+2+2(√(1+x))))/((x+2)^2 −4(1+x))) =lim_(x→0)    ((x^2 (x+2+2(√(1+x))))/(x^2  +4x+4−4−4x))  =lim_(x→0) x+2+2(√(1+x))=2+2=4
letf(x)=x2x+221+xlimx0f(x)=limx0x2(x+2+21+x)(x+2)24(1+x)=limx0x2(x+2+21+x)x2+4x+444x=limx0x+2+21+x=2+2=4

Leave a Reply

Your email address will not be published. Required fields are marked *