Menu Close

lim-x-0-x-n-sin-n-x-x-n-sin-n-x-is-non-zero-finite-then-find-n-




Question Number 141965 by gsk2684 last updated on 25/May/21
lim_(x→0)  ((x^n sin^n x)/(x^n −sin^n x)) is non-zero finite,   then find n?
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}^{{n}} \mathrm{sin}\:^{{n}} {x}}{{x}^{{n}} −\mathrm{sin}\:^{{n}} {x}}\:{is}\:{non}-{zero}\:{finite},\: \\ $$$${then}\:{find}\:{n}? \\ $$
Commented by gsk2684 last updated on 25/May/21
solution please
$${solution}\:{please} \\ $$
Answered by Dwaipayan Shikari last updated on 25/May/21
lim_(x→0) sinx∼(x−(x^3 /(3!)))  lim_(x→0) ((x^n x^n )/(x^n −(x−(x^3 /6))^n ))=(x^n /(1−(1−(x^2 /6))^n ))=(x^n /(((nx^2 )/6)+O(x^4 ))) =(6/n).(x^n /x^2 )  O(x^4 )→0  to get a non zero finite value x^n =x^2  then n=2
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{sinx}\sim\left({x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}\right) \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}^{{n}} {x}^{{n}} }{{x}^{{n}} −\left({x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}\right)^{{n}} }=\frac{{x}^{{n}} }{\mathrm{1}−\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{6}}\right)^{{n}} }=\frac{{x}^{{n}} }{\frac{{nx}^{\mathrm{2}} }{\mathrm{6}}+{O}\left({x}^{\mathrm{4}} \right)}\:=\frac{\mathrm{6}}{{n}}.\frac{{x}^{{n}} }{{x}^{\mathrm{2}} } \\ $$$${O}\left({x}^{\mathrm{4}} \right)\rightarrow\mathrm{0} \\ $$$${to}\:{get}\:{a}\:{non}\:{zero}\:{finite}\:{value}\:{x}^{{n}} ={x}^{\mathrm{2}} \:{then}\:{n}=\mathrm{2} \\ $$
Commented by gsk2684 last updated on 25/May/21
thank you
$${thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *