Menu Close

lim-x-0-x-y-sec-x-y-ysec-y-x-




Question Number 140530 by liberty last updated on 09/May/21
lim_(x→0)  (((x+y)sec (x+y)−ysec y)/x)=?
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{x}+\mathrm{y}\right)\mathrm{sec}\:\left(\mathrm{x}+\mathrm{y}\right)−\mathrm{ysec}\:\mathrm{y}}{\mathrm{x}}=? \\ $$
Answered by EDWIN88 last updated on 09/May/21
 L′Ho^  pital  lim_(x→0)  ((sec (x+y)+(x+y)sec (x+y)tan (x+y)−0)/1)  = lim_(x→0)  ((x+y)tan (x+y)+1)sec (x+y)  = (y tan y +1) sec y
$$\:\mathrm{L}'\mathrm{H}\ddot {\mathrm{o}pital} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sec}\:\left(\mathrm{x}+\mathrm{y}\right)+\left(\mathrm{x}+\mathrm{y}\right)\mathrm{sec}\:\left(\mathrm{x}+\mathrm{y}\right)\mathrm{tan}\:\left(\mathrm{x}+\mathrm{y}\right)−\mathrm{0}}{\mathrm{1}} \\ $$$$=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\left(\mathrm{x}+\mathrm{y}\right)\mathrm{tan}\:\left(\mathrm{x}+\mathrm{y}\right)+\mathrm{1}\right)\mathrm{sec}\:\left(\mathrm{x}+\mathrm{y}\right) \\ $$$$=\:\left(\mathrm{y}\:\mathrm{tan}\:\mathrm{y}\:+\mathrm{1}\right)\:\mathrm{sec}\:\mathrm{y}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *