Menu Close

lim-x-1-lnx-ln-1-x-




Question Number 78122 by Tony Lin last updated on 14/Jan/20
lim_(x→1^− ) lnx∙ln(1−x)=?
$$\underset{{x}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}}{lnx}\centerdot{ln}\left(\mathrm{1}−{x}\right)=? \\ $$
Commented by msup trace by abdo last updated on 14/Jan/20
changement 1−x =t give  lim_(x→1^− )   lnxln(1−x)  =lim_(t→0^+ )  ln(1−t).ln(t)  =lim_(t→0^+ )   (tlnt)×((ln(1−t))/t)  we have lim_(t→0^+ )   (tlnt)=0  lim_(t→0^+ )   ((ln(1−t))/t) =−1 ⇒  lim_(x→1^− )   lnx ln(1−x) =0
$${changement}\:\mathrm{1}−{x}\:={t}\:{give} \\ $$$${lim}_{{x}\rightarrow\mathrm{1}^{−} } \:\:{lnxln}\left(\mathrm{1}−{x}\right) \\ $$$$={lim}_{{t}\rightarrow\mathrm{0}^{+} } \:{ln}\left(\mathrm{1}−{t}\right).{ln}\left({t}\right) \\ $$$$={lim}_{{t}\rightarrow\mathrm{0}^{+} } \:\:\left({tlnt}\right)×\frac{{ln}\left(\mathrm{1}−{t}\right)}{{t}} \\ $$$${we}\:{have}\:{lim}_{{t}\rightarrow\mathrm{0}^{+} } \:\:\left({tlnt}\right)=\mathrm{0} \\ $$$${lim}_{{t}\rightarrow\mathrm{0}^{+} } \:\:\frac{{ln}\left(\mathrm{1}−{t}\right)}{{t}}\:=−\mathrm{1}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{1}^{−} } \:\:{lnx}\:{ln}\left(\mathrm{1}−{x}\right)\:=\mathrm{0} \\ $$
Commented by Tony Lin last updated on 14/Jan/20
thanks sir
$${thanks}\:{sir} \\ $$
Commented by msup trace by abdo last updated on 14/Jan/20
you are welcome
$${you}\:{are}\:{welcome} \\ $$
Answered by john santu last updated on 14/Jan/20
using by series?
$${using}\:{by}\:{series}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *