Menu Close

lim-x-1-n-




Question Number 131938 by Raxreedoroid last updated on 09/Feb/21
lim_(x→∞) (1/( (√(n!))))=?
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\:\sqrt{{n}!}}=? \\ $$
Answered by Faetma last updated on 09/Feb/21
 {: ((lim_(n→+∞)  n!=+∞)),((lim_(N→+∞)  (√N)=+∞)),((lim_(N′→+∞)  (1/(N′))=0^+ )) }lim_(n→+∞)  (1/( (√(n!))))=0^+
$$\left.\begin{matrix}{\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:{n}!=+\infty}\\{\underset{\mathrm{N}\rightarrow+\infty} {\mathrm{lim}}\:\sqrt{\mathrm{N}}=+\infty}\\{\underset{\mathrm{N}'\rightarrow+\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{N}'}=\mathrm{0}^{+} }\end{matrix}\right\}\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{\:\sqrt{{n}!}}=\mathrm{0}^{+} \\ $$
Answered by Eyass last updated on 10/Feb/21
∀n∈N ; n! > n  ⇔         , (√(n!))>(√n)  ⇒ n∈N^∗ , 0<(1/( (√(n!)))) < (1/( (√n)))  lim_(n→+∞)  ((1/( (√n)))) = 0 ⇒ lim_(n→+∞)  ((1/( (√(n!))))) = 0
$$\forall{n}\in{N}\:;\:{n}!\:>\:{n} \\ $$$$\Leftrightarrow\:\:\:\:\:\:\:\:\:,\:\sqrt{{n}!}>\sqrt{{n}} \\ $$$$\Rightarrow\:{n}\in{N}^{\ast} ,\:\mathrm{0}<\frac{\mathrm{1}}{\:\sqrt{{n}!}}\:<\:\frac{\mathrm{1}}{\:\sqrt{{n}}} \\ $$$$\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\:\sqrt{{n}}}\right)\:=\:\mathrm{0}\:\Rightarrow\:\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\:\sqrt{{n}!}}\right)\:=\:\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *