Menu Close

lim-x-3-n-n-2-n-n-




Question Number 136701 by mathlove last updated on 25/Mar/21
lim_(x→∞) ((3^n −n!)/(2^n −n!))=?
limx3nn!2nn!=?
Commented by yutytfjh67ihd last updated on 25/Mar/21
Commented by mathlove last updated on 25/Mar/21
help me
helpme
Answered by mathmax by abdo last updated on 25/Mar/21
lim_(n→+∞) ((n!−3^n )/(n!−2^n )) =lim_(n→+∞) ((1−(3^n /(n!)))/(1−(2^n /(n!))))  n!∼n^n  e^(−n) (√(2πn)) ⇒(3^n /(n!))∼(3^n /(n^n  e^(−n) (√(2πn))))  ⇒  log((3^n /(n!)))∼nlog3−nlogn+n−(1/2)log(2nπ)  =n(log3−logn+1−(1/2)log(2nπ))→−∞ ⇒(3^n /(n!))→0  also (2^n /(n!))→0 ⇒lim_(n→∞) ((n!−3^n )/(n!−2^n ))=1
limn+n!3nn!2n=limn+13nn!12nn!n!nnen2πn3nn!3nnnen2πnlog(3nn!)nlog3nlogn+n12log(2nπ)=n(log3logn+112log(2nπ))3nn!0also2nn!0limnn!3nn!2n=1

Leave a Reply

Your email address will not be published. Required fields are marked *