Menu Close

lim-x-3-x-3-x-3-x-3-x-




Question Number 137737 by bemath last updated on 06/Apr/21
lim_(x→−∞)  ((3^x −3^(−x) )/(3^x +3^(−x) )) =?
limx3x3x3x+3x=?
Answered by greg_ed last updated on 06/Apr/21
L′Hopital′s rule   lim_(x→−∞)    ((3^x −3^(−x) )/(3^x +3^(−x) )) = lim_(x→−∞)   (((d/dx)(3^x −3^(−x) ))/((d/dx)(3^x +3^(−x) )))                                        = lim_(x→−∞)   (((ln(3)×9^x +ln(3))/3^x )/((ln(3)×9^x −ln(3))/3^x ))                                        = lim_(x→−∞)   ((ln(3)×9^x +ln(3))/(ln(3)×9^x −ln(3)))                                        = lim_(x→−∞)   ((9^x +1)/(9^x −1))  since lim_(x→−∞) 9^x  = 0,   then :                            lim_(x→−∞)   ((3^x −3^(−x) )/(3^x +3^(−x) )) = −1.
LHopitalsrulelimx3x3x3x+3x=limxddx(3x3x)ddx(3x+3x)=limxln(3)×9x+ln(3)3xln(3)×9xln(3)3x=limxln(3)×9x+ln(3)ln(3)×9xln(3)=limx9x+19x1sincelimx9x=0,then:limx3x3x3x+3x=1.
Answered by bemath last updated on 06/Apr/21

Leave a Reply

Your email address will not be published. Required fields are marked *