Menu Close

lim-x-4-2-x-x-1-3-2-8-x-x-




Question Number 66640 by hmamarques1994@gmail.com last updated on 18/Aug/19
    lim_(x→4)  ((((2+x(√x)))^(1/3) −2)/(8−x(√x)))=?
limx42+xx328xx=?
Commented by kaivan.ahmadi last updated on 18/Aug/19
x→4^+  :  ((((10))^(1/3) −2)/(8−8^+ ))=((((10))^(1/3) −2)/0^− )=−∞  x→4^−  :  ((((10))^(1/3) −2)/0^+ )=+∞
x4+:103288+=10320=x4:10320+=+
Commented by kaivan.ahmadi last updated on 18/Aug/19
if you mean lim_(x→4) ((((4+2(√x)))^(1/3) −2)/(8−x(√x))) then it is equal to  lim_(x→4)  ((1/(3(√x)(((4+2(√x))^2 ))^(1/3) ))/(−(√x)−((√x)/2)))=((1/(3×2×4))/(−2−1))=−(1/(72))
ifyoumeanlimx44+2x328xxthenitisequaltolimx413x(4+2x)23xx2=13×2×421=172
Commented by mathmax by abdo last updated on 18/Aug/19
perhaps the Q is find lim_(x→4) (((^3 (√(x(√x)))−2)/(8−x(√x)))  or lim_(x→4)   (((^3 (√(4+2(√x)))−2)/(8−x(√x)))  let find lim_(x→4)    (((^3 (√(x(√x)))−2)/(8−x(√x)))  =lim_(x→4)  A(x) changement  (^3 (√(x(√x))))=t give x(√x)=t^3  ⇒lim_(x→4)  A(x)=lim_(t→2)     ((t−2)/(8−t^3 ))  =−lim_(t→2)   ((t−2)/((t−2)(t^2  +2t +4))) =lim_(t→2)     ((−1)/(t^2  +2t +4)) =((−1)/(12))  let find lim_(x→4)  (((^3 (√(4+2(√x)))−2)/(8−x(√x)))=lim_(x→4) B(x)   we dl the changement   (^3 (√(4+2(√x))))=t ⇒4+2(√x)=t^3  ⇒2(√x)=t^3 −4 ⇒(√x) =(t^3 /2)−2 ⇒  x=((t^3 /2)−2)^2  ⇒lim_(x→4)  B(x) =lim_(t→2)     ((t−2)/(8−((t^3 /2)−2)^3 ))  =lim_(t→2)   ((t−2)/(8−(((t^3 −4)/2))^3 )) =lim_(t→2)   8× ((t−2)/(64−(t^3 −4)^3 ))  =lim_(t→2)    ((8(t−2))/(64−(t^9  −3t^6 (4)+3t^3 4^2 −4^3 )))  =lim_(t→2)    ((8(t−2))/(64−t^9 +12t^6 −48t^3  +64)) =lim_(t→2)  ((8(t−2))/(−t^9  +12t^6 −48t^3  +128))  =_(hop)     lim_(t→2)    (8/(−9t^8  +12×6t^5  −48×3 t^2 )) =(8/(−9.2^8  +12×6. 2^5 −48.3.2^2 ))  =.....
perhapstheQisfindlimx4(3xx28xxorlimx4(34+2x28xxletfindlimx4(3xx28xx=limx4A(x)changement(3xx)=tgivexx=t3limx4A(x)=limt2t28t3=limt2t2(t2)(t2+2t+4)=limt21t2+2t+4=112letfindlimx4(34+2x28xx=limx4B(x)wedlthechangement(34+2x)=t4+2x=t32x=t34x=t322x=(t322)2limx4B(x)=limt2t28(t322)3=limt2t28(t342)3=limt28×t264(t34)3=limt28(t2)64(t93t6(4)+3t34243)=limt28(t2)64t9+12t648t3+64=limt28(t2)t9+12t648t3+128=hoplimt289t8+12×6t548×3t2=89.28+12×6.2548.3.22=..
Commented by hmamarques1994@gmail.com last updated on 18/Aug/19
Good!
Good!
Commented by Sayantan chakraborty last updated on 18/Aug/19
ANSWER????
ANSWER????
Commented by mathmax by abdo last updated on 18/Aug/19
complete the calculus sir.
completethecalculussir.

Leave a Reply

Your email address will not be published. Required fields are marked *