Menu Close

lim-x-4-ax-b-x-x-4-3-4-a-b-




Question Number 9654 by ridwan balatif last updated on 22/Dec/16
lim_(x→4) ((ax+b−(√x))/(x−4))=(3/4),  a+b=...?
limx4ax+bxx4=34,a+b=?
Answered by prakash jain last updated on 22/Dec/16
lim_(x→4) ((ax+b−(√x))/(x−4))=(3/4),  a+b=...?  Since limit exists  lim_(x→4)  ax+b−(√x)=0  4a+b−2=0  b=2−4a  ((ax+2−4a−(√x))/(x−4))=((a(x−4)−((√x)−2))/(x−4))  =((a(x−4)−(((x−4))/(((√x)+2))))/(x−4))=a−(1/( (√x)+2))  a−(1/4)=(3/4)⇒a=1  b=2−4a=−2  a+b=−1  check  lim_(x→4) ((x−2−(√x))/(x−4))=lim_(x→4) (((x−4)−((√x)−2))/((x−4)))  =lim_(x→4)  (((x−4)(1−(1/( (√x)+2))))/((x−4)))=(3/4)
limx4ax+bxx4=34,a+b=?Sincelimitexistslimx4ax+bx=04a+b2=0b=24aax+24axx4=a(x4)(x2)x4=a(x4)(x4)(x+2)x4=a1x+2a14=34a=1b=24a=2a+b=1checklimx4x2xx4=limx4(x4)(x2)(x4)=limx4(x4)(11x+2)(x4)=34
Commented by ridwan balatif last updated on 23/Dec/16
thank you sir for your help
thankyousirforyourhelp

Leave a Reply

Your email address will not be published. Required fields are marked *