Menu Close

lim-x-pi-2-2-1-sin-x-2-cos-2-x-




Question Number 138996 by bramlexs22 last updated on 21/Apr/21
lim_(x→π/2)  (((√2)−(√(1+sin x)))/( (√2) cos^2 x)) =?
limxπ/221+sinx2cos2x=?
Answered by EDWIN88 last updated on 21/Apr/21
 lim_(x→π/2)  ((1−sin x)/( (√2)(1−sin x))).lim_(x→π/2)  (1/((1+sin x)((√2)+(√(1+sin x)))))  = (1/( (√2))) . (1/(2(2(√2)))) = (1/8)
limxπ/21sinx2(1sinx).limxπ/21(1+sinx)(2+1+sinx)=12.12(22)=18
Answered by mathmax by abdo last updated on 22/Apr/21
let f(x)=(((√2)−(√(1+sinx)))/( (√2)cos^2 x)) ⇒f(x)=_(x=(π/2)−t)   (((√2)−(√(1+cost)))/( (√2)sin^2 t))=g(t)  (x→(π/2) ⇒t→0)  cost ∼1−(t^2 /2) ⇒1+cost∼2−(t^2 /2)  and sint∼t  (√(1+cost))∼(√(2−(t^2 /2)))=(√2)(√(1−(t^2 /4)))∼(√2)(1−(t^2 /8)) ⇒  g(t)∼(((√2)−(√2)(1−(t^2 /8)))/( (√2)t^2 ))=(1/8) ⇒lim_(t→0) g(t)=(1/8)=lim_(x→(π/2)) f(x)
letf(x)=21+sinx2cos2xf(x)=x=π2t21+cost2sin2t=g(t)(xπ2t0)cost1t221+cost2t22andsintt1+cost2t22=21t242(1t28)g(t)22(1t28)2t2=18limt0g(t)=18=limxπ2f(x)

Leave a Reply

Your email address will not be published. Required fields are marked *