lim-x-pi-2-ln-sin-2-x-pi-2-x-2- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 66316 by mathmax by abdo last updated on 12/Aug/19 limx→π2ln(sin2x)(π2−x)2 Commented by mathmax by abdo last updated on 21/Aug/19 letf(x)=ln(sin2x)(π2−x)2changementπ2−x=tgivelimx→π2f(x)=limt→0ln(cos2t)t2=limt→0ln(1+cos(2t)2)t2butln(1+cos(2t)2)=ln(1+cos(2t))−ln(2)cos(2t)∼1−2t2+o(t2)⇒1+cos(2t)∼2−2t2⇒ln(1+cos(2t))∼ln(2)+ln(1−t2)∼ln(2)−t2⇒ln(1+cos(2t)2)t2∼−1(t→o)⇒limx→π2f(x)=−1 Answered by kaivan.ahmadi last updated on 12/Aug/19 =hoplimx→π2sin2x−2sin2x(π2−x)=hoplimx→π22cos2x−2sin2x(π2−x)+2sin2x=−22=−1 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-lim-x-0-ln-cosx-1-cos-2x-Next Next post: find-lim-x-0-1-x-1-x-1-sinx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.