Menu Close

lim-x-pi-2-ln-sin-2-x-pi-2-x-2-




Question Number 66316 by mathmax by abdo last updated on 12/Aug/19
lim_(x→(π/2))    ((ln(sin^2 x))/(((π/2)−x)^2 ))
limxπ2ln(sin2x)(π2x)2
Commented by mathmax by abdo last updated on 21/Aug/19
let f(x) =((ln(sin^2 x))/(((π/2)−x)^2 ))  changement (π/2)−x =t give  lim_(x→(π/2))   f(x) =lim_(t→0)    ((ln(cos^2 t))/t^2 ) =lim_(t→0)  ((ln(((1+cos(2t))/2)))/t^2 )  but  ln(((1+cos(2t))/2)) =ln(1+cos(2t))−ln(2)  cos(2t)∼1−2t^2  +o(t^2 ) ⇒1+cos(2t)∼2−2t^2  ⇒  ln(1+cos(2t))∼ln(2)+ln(1−t^2 )∼ln(2)−t^2  ⇒  ((ln(((1+cos(2t))/2)))/t^2 ) ∼−1 (t→o) ⇒lim_(x→(π/2))   f(x)=−1
letf(x)=ln(sin2x)(π2x)2changementπ2x=tgivelimxπ2f(x)=limt0ln(cos2t)t2=limt0ln(1+cos(2t)2)t2butln(1+cos(2t)2)=ln(1+cos(2t))ln(2)cos(2t)12t2+o(t2)1+cos(2t)22t2ln(1+cos(2t))ln(2)+ln(1t2)ln(2)t2ln(1+cos(2t)2)t21(to)limxπ2f(x)=1
Answered by kaivan.ahmadi last updated on 12/Aug/19
=^(hop)  lim_(x→(π/2))  ((sin2x)/(−2sin^2 x((π/2)−x)))=^(hop)   lim_(x→(π/2))  ((2cos2x)/(−2sin2x((π/2)−x)+2sin^2 x))=  ((−2)/2)=−1
=hoplimxπ2sin2x2sin2x(π2x)=hoplimxπ22cos2x2sin2x(π2x)+2sin2x=22=1

Leave a Reply

Your email address will not be published. Required fields are marked *