Menu Close

lim-x-pi-2-x-cot-x-pi-2cos-x-




Question Number 142459 by bramlexs22 last updated on 01/Jun/21
      −−−−−−−−−−−      lim_(x→(π/2))  ((x/(cot x))−(π/(2cos x)))=?   ___________________
limxπ2(xcotxπ2cosx)=?___________________
Answered by benjo_mathlover last updated on 01/Jun/21
    lim_(x→(π/2))  (((x sin x)/(cos x))−(π/(2 cos x)))  = lim_(x→(π/2))  (((2x sin x−π)/(2 cos x)))  = lim_(x→(π/2))  (((2sin x +2x cos x)/(−2sin x)))  = −1
limxπ2(xsinxcosxπ2cosx)=limxπ2(2xsinxπ2cosx)=limxπ2(2sinx+2xcosx2sinx)=1
Answered by mathmax by abdo last updated on 02/Jun/21
f(x)=(x/(cotanx))−(π/(2cosx)) ⇒f(x)=((xsinx)/(cosx))−(π/(2cosx))=((2xsinx−π)/(2cosx))  changement x=(π/2)−t give f(x)=f((π/2)−t)=((2((π/2)−t)cost−π)/(2sint))  =(((π−2t)cost−π)/(2sint)) ∼(((π−2t)(1−(t^2 /2))−π)/(2t))  =((π−(π/(2 ))t^2 −2t+t^3 −π)/(2t))=−(π/4)t−1+(t^2 /2) →−1 (t→0) ⇒  lim_(x→(π/2)) f(x)=−1
f(x)=xcotanxπ2cosxf(x)=xsinxcosxπ2cosx=2xsinxπ2cosxchangementx=π2tgivef(x)=f(π2t)=2(π2t)costπ2sint=(π2t)costπ2sint(π2t)(1t22)π2t=ππ2t22t+t3π2t=π4t1+t221(t0)limxπ2f(x)=1

Leave a Reply

Your email address will not be published. Required fields are marked *