lim-x-pi-4-1-tan-3-x-cos-2x- Tinku Tara June 3, 2023 Limits 0 Comments FacebookTweetPin Question Number 140574 by john_santu last updated on 09/May/21 limx→π41−tan3xcos2x=? Answered by bramlexs22 last updated on 09/May/21 limx→π4(1+tan2x)(1−tan3x)1−tan2x=limx→π41+tan2x1+tanx.limx→π4(1−tanx)(tan2x+tanx+1)1−tanx=22×31=3. Answered by john_santu last updated on 09/May/21 limx→π4cos3x−sin3xcos3x(cos2x−sin2x)=limx→π4cos2x+cosx.sinx+sin2xcos3x(cosx+sinx).limx→π4cosx−sinxcosx−sinx=3224(2)=3. Answered by EDWIN88 last updated on 09/May/21 x=π4+z⇒limz→01−tan3(z+π4)cos(2z+π2)=limz→0(tan2(z+π4)+tan(z+π4)+1)(1−tan(z+π4))−sin2z=3×limz→0cos(z+π4)−sin(z+π4)−cos(z+π4)sin2z=−62×limz→0−sin(z+π4)−cos(z+π4)2cos2z=−62×−22=3 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: For-y-x-2-show-how-to-find-dy-d-Next Next post: 1-Show-that-for-a-01-the-function-f-a-R-R-defined-by-f-a-x-x-a-is-a-holder-function-in-other-way-there-exist-K-gt-0-such-as-x-y-gt-0-f-a-x-f-a-y-K-x-y-a- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.